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RESUMO

Quirino, M. C. Classificagdo automatica de imagens de satélite para
acompanhamento e controle do desmatamento na Amazonia. 2023. 59p.
Monografia (MBA em Inteligéncia Artificial e Big Data) - Instituto de Ciéncias
Matematicas e de Computacao, Universidade de Sao Paulo, Sao Carlos, 2023.

Buscando contribuir para atividades de acompanhamento e controle do desmatamento da
Amagzodnia, o trabalho construiu, aplicando distintas técnicas de deep learning, modelos
de visdo computacional voltados a classificacao de rétulos de condi¢oes atmosféricas e de
elementos de superficie presentes em imagens de satélite. Ao automatizar a classificacao,
esse modelo pode tanto ser utilizado para um acompanhamento em tempo real das areas
com agdes antropogénicas, quanto como uma ferramenta de suporte para a atuagao do
fotointerprete. Para desenvolver os modelos, o trabalho utilizou um conjunto com cerca de
40 mil imagens disponibilizadas no Kaggle em 2017. Consultadas essas imagens, o estudo
buscou entender as caracteristicas dos rotulos a serem preditos, avaliando a distribuicao das
ocorréncias dessas classes e analisando as correlagoes entre elas. Nessa etapa, verificou-se
que as imagens abrangiam 17 rétulos, divididos em condigoes atmosféricas e elementos
comuns e raros de superficie. Na modelagem, o estudo evoluiu gradualmente a complexi-
dade dos desenvolvimentos, explorando técnicas de transfer learning, aumentacao de dados
e variacoes nos parametros do modelo. Finalizados os desenvolvimentos, a melhor abor-
dagem foi composta combinando 2 modelos, sendo um associado a predi¢ao multi-classe
das condig¢Oes atmosféricas e o outro a predi¢gao multirrétulo dos elementos de superficie.
Considerando o cenario combinado, a performance alcancada foi de 0,918 na métrica Fp,
selecionada para lidar com o desbalanceamento dos rétulos. Avaliando as classes individu-
almente, para as condi¢oes atmosféricas, o modelo conseguiu classificar imagens limpas ou
parcialmente nubladas com performances de 0,970 e 0,925, mas apresentou dificuldade
para classificar imagens nubladas (0,645). Para elementos de superficie, influenciado pelo
desbalanceamento das classes no conjunto de treino, o modelo apresentou bons resultados
para rétulos como vegetacao primaria (0,99), agricultura (0,894) e estrada (0,870), mas teve
dificuldade ao classificar elementos pouco frequentes, como regioes de mineragao (0,485),
extragao seletiva (0,396) e solo exposto (0,311). Por esses resultados, o trabalho concluiu
que o objetivo proposto de construir uma modelagem capaz de classificar automaticamente
imagens de satélite da Amazonia foi atendido, no entanto avaliou que existem margens de

melhoria, sobretudo nas classes menos presentes nos dados selecionados.

Palavras-chave: Classificagao multirrétulo. Classificacao multi-classe. Aprendizado pro-

fundo. Visdo computacional.






ABSTRACT

Quirino, M. C. Automatic classification of satellite images for monitoring and
controlling deforestation in the Amazon rainforest. 2023. 59p. Monograph (MBA
in Artificial Intelligence and Big Data) - Instituto de Ciéncias Matematicas e de
Computacao, Universidade de Sao Paulo, Sao Carlos, 2023.

Seeking to contribute to activities related to monitoring and controlling deforestation in the
Amagzon rainforest, this monograph constructed computer vision models using various deep
learning techniques, with a focus on classifying multiple labels of atmospheric conditions
and surface elements present in satellite images. By automating the classification, this
work can be applied for real-time monitoring of areas with anthropogenic activities and as
a support tool for photointerpreters’ tasks. The study used a dataset with approximately
40,000 images available on Kaggle in 2017 to develop the models. Upon examining these
images, the work aimed to comprehend the characteristics of their labels by evaluating
the distribution of these classes and analyzing the correlations among them. At this stage,
it was observed that the images encompassed 17 classes, categorized into atmospheric
conditions, common surface elements, and rare surface elements. During the modeling phase,
the study gradually increased the complexity of the developments, exploring techniques
such as transfer learning, data augmentation, and variations in model parameters. After
completing the development tasks, the best approach was composed by combining two
models, with one dedicated to multi-class prediction of atmospheric conditions and the
other to multi-label prediction of surface elements. Considering the combined scenario, the
achieved performance was 0.918 on the F-beta metric, selected to address label imbalance.
When evaluating the classes individually for atmospheric conditions, the model was able
to classify clear or partly cloudy images with performances of 0.970 and 0.925, but it
had difficulty classifying cloudy images (0.645). Regarding surface elements, influenced
by the imbalance of labels in the training set, the model achieved good results for classes
such as primary vegetation (0.99), agriculture (0.894), and road (0.870), but encountered
difficulties when classifying less frequent elements such as conventional mining (0.485),
selective logging (0.396), and bare ground (0.311). Based on these results, the study
concluded that the proposed objective of constructing a model capable of automatically
classifying satellite images of the Amazon rainforest was achieved. However, it also assessed
that there are opportunities for improvement, especially within the less-represented classes
in the selected data.

Keywords: Multi-label classification. Multi-class classification. Deep Learning. Computer

vision.
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1 INTRODUCAO

Nesse primeiro capitulo, apresentam-se a motivacao e os objetivos do estudo e

descreve-se a estrutura do trabalho a ser explorada nas se¢oes seguintes.

1.1 Motivacao

O desmatamento da Amazodnia, entendido como a supressao de areas de vegetacao
priméria por agoes antropogénicas, que ja se encontrava em patamares criticos, esta
avancando de forma acelerada nos tltimos anos, o que intensifica a relevancia de solugoes que
contribuam para um controle eficiente e estratégico da regiao. Segundo dados do Programa
de Monitoramento da Floresta Amazonica Brasileira por Satélite (PRODES), desenvolvido
pelo Instituto de Pesquisas Espaciais (INPE), as taxas anuais de desmatamento da floresta,
avaliadas em torno de 7 mil km? até 2018, estao superiores a 10 mil km? desde 2019 e
atingiram um pico de 13 mil km? no ano de 2021, o que seria equivalente a 8,5 vezes o
municipio de Sao Paulo. No total, a regiao desmatada ja ultrapassou 830 mil km?, valor
superior a 3,4 vezes a area do estado de Sao Paulo e que corresponde a 17% da Amazdnia

Legal, que, por sua vez, abrange 59% do territério brasileiro (INPE, 2023).

As causas desse avanco do desmatamento sao diversas e complexas, podendo-se
destacar a expansao agropecuaria, a realizagdo de obras de mineragao, estradas e barragens,
e a impunidade a crimes ambientais. Além desses aspectos, que contribuem para uma
modificacao intensa da cobertura vegetal em um curto intervalo de tempo, naquele que é
classificado como desmatamento por corte raso, a Amazonia também é ameacada pelo
processo de degradacao progressiva, em que ocorre uma gradativa perda da qualidade
original da floresta, causada por fatores como exploragao madeireira, cacas, queimadas e
eventos climaticos. Como consequéncia, a combinacao desses cenarios de desmatamento
provoca efeitos como perda de biodiversidade em larga escala, tanto da fauna quanto da
flora local, desequilibrio ambiental, danos a seguranca alimentar da populacao e, também,

intensificacdo de mudangas climéticas e de eventos climéticos extremos (INPE, 2022).

Diante desse contexto de expansao nos niveis de desmatamento e dada a criticidade
dos impactos atrelados, nota-se a relevancia de solugoes, como o PRODES e o Sistema
de Detecgao de Desmatamento em Tempo Real (DETER), também desenvolvido pelo
INPE, que contribuam para o monitoramento eficiente dos locais ameagados. No caso
do PRODES, programa iniciado em 1988, o principal objetivo é estimar a taxa anual de
desmatamento da floresta primaria na Amazonia Legal Brasileira. Para isso, por meio da
fotointerpretacao por especialistas de imagens de satélite com resolucao espacial entre 20
e 30 metros, o projeto realiza o mapeamento anual dos incrementos do desmatamento,

classificando-os em grupos de desmatamento por corte raso ou por degradacao progressiva
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da vegetacao. Ja o DETER, por meio de alertas gerados diariamente, possui como principal
objetivo informar rapidamente os 6rgaos de fiscalizagao sobre novas alteragoes na cobertura
florestal. Com esses alertas, que também sao disponibilizados para consulta publica no
portal TerraBrasilis, os 6rgaos de fiscalizacao conseguem, de forma agil, planejar suas

agoes e atuar no controle da regiao (INPE, 2022).

Até 2015, o DETER utilizava imagens geradas por sensores com resolucao espacial de
250 metros, que permitia gerar avisos para alteracoes da cobertura vegetal com area minima
de 25 hectares, mas nao possibilitava a classificacdo das imagens em rétulos mais detalhados.
A partir de 2015, a metodologia do DETER foi aprimorada e passou a utilizar imagens
com resolucao espacial entre 56 e 64 metros, o que viabilizou reduzir a area minima para 3
hectares e permitou um maior detalhamento dos alertas, que passaram a ser classificados
nos casos de desmatamento com solo exposto ou com vegetacao, mineragao, degradagao,
cicatriz de incéndio florestal e cortes seletivos de exploracao madeireira (desordenado
ou geométrico). Para executar essas classificagdes, a metodologia utilizada pelo DETER
baseia-se na fotointerpretacao das imagens a partir dos elementos de tonalidade, cor, forma,
textura e contexto. Os fotointérpretes avaliam, também, os resultados do Modelo Linear
de Mistura Espectral (MLME), que é responsével por estimar as fracoes de solo, vegetagao

e sombra presentes em cada imagem (INPE, 2022).

Além dos métodos adotado pelo DETER e pelo PRODES, robustos pelo conhe-
cimento especialista do fotointérprete, outra abordagem aplicavel para a classificacao
das imagens da Amazonia consiste no uso de técnicas de Deep Learning, por meio do
treinamento de Convolutional Neural Networks (CNNs). Nesse caso, os modelos treinados
em imagens de satélite previamente rotuladas podem ser utilizados para classificar novas
imagens coletadas. Essa alternativa, por automatizar a classificagdo, pode ser utilizada
tanto para um acompanhamento em tempo real das areas com agoes antropogénicas, quanto
como uma informagao adicional para auxiliar e aprimorar a atuacao do fotointerprete. No
presente trabalho, essa foi a abordagem implementada. Em particular, o estudo procurou
desenvolver e comparar modelos de CNNs que, dadas imagens de satélite da Amazonia,
fossem capazes de avalid-las automaticamente com um elevado nivel de assertividade,
classificando tanto as condi¢oes atmosféricas quanto os diferentes elementos da superficie

terrestre presentes nelas, sejam naturais ou resultantes de agoes antropogénicas.
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1.2 Objetivo

Dado o contexto apresentado no topico anterior, o trabalho possui como objetivo
geral desenvolver um modelo que, fornecida uma imagem de satélite da regiao amazonica,

realize classificagdbes multirrétulos dessa imagem.

Em termos especificos, esse objetivo pode ser detalhado nas seguintes questoes:

« Qual é a condigdo atmosférica existente em uma imagem selecionada (totalmente

nublado, parcialmente nublado, céu limpo, neblina)?

« Quais sdo os elementos naturais (florestas primarias, rios, lagos) e resultantes de
agoes antropogénicas (estradas, regides de cultivo, habita¢ao, mineragao, garimpo,

queimadas) existentes em uma imagem selecionada?

o Como a aplicacao de distintas técnicas de Deep Learning, como o uso de redes
pré-treinadas e a realizacdo de aumentacao nos dados, podem contribuir para a

melhoria nos resultados das classifica¢oes?

1.3 Estrutura do trabalho

Em relacao a estrutura do trabalho, apos o atual capitulo de introducgao, apresenta-
se a fundamentacao tedrica, na qual sdo explorados os aspectos conceituais dos métodos
de Visao Computacional utilizados no estudo. Na sequéncia, o terceiro capitulo delimita
o escopo do problema avaliado e descreve a metodologia a ser implementada para a
abordagem desse problema. O quarto capitulo, por sua vez, detalha os principais resultados
obtidos. Por fim, o quinto capitulo apresenta as conclusoes do trabalho, assim como discute
oportunidades de melhorias e de novos desenvolvimentos que podem ser explorados em

projetos futuros.
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2 FUNDAMENTACAO TEORICA

Para a secdo de fundamentos tedricos, o primeiro tépico contempla uma breve
contextualizacao da area de Visao Computacional, utilizando como referéncia, sobretudo, os
estudos de Szeliski (2022) e Davies (2017). Apés isso, utilizando como referéncia os livros de
Goodfellow, Bengio e Courville (2016), Chollet (2021) e Géron (2022), os préximos topicos
detalham conceitos gerais das abordagens de deep learning e, em seguida, aprofundam nas
explicagoes de elementos das convolutional neural networks (CNNs) e das arquiteturas de

CNNs utilizadas durante as etapas de modelagem do estudo.

2.1 Contextualizacao da area de Visao Computacional

Como descrito por Szeliski (2022) e por Davies (2017), a Visao Computacional é
um campo da Ciéncia da Computacao direcionado ao desenvolvimento de ferramentas
computacionais que sejam capazes de analisar, interpretar e extrair automaticamente
informagoes do mundo a partir de imagens ou sequéncias de imagens. Contemplando
aplicagoes diversas, as solugoes de Visao Computacional estao sendo aplicadas, dentre
outros problemas, para tarefas de classificacdo e segmentacao de imagem, detecgao de

objetos, analises e predi¢oes de movimentos e reconstrucao tridimensional de objetos a

partir de multiplas imagens (FORSYTH; PONCE, 2011; DAVIES, 2017).

Os primeiros estudos em visao computacional ocorreram no inicio da década de
70, estimulados pelo interesse do periodo nas areas inteligéncia artificial e robética. Nessa
época, o que diferenciou a visao computacional do campo ja existente de processamento
digital de imagens foi o desejo de recuperar estruturas 3D de objetos a partir de fei¢oes
2D analisadas. Na década de 80, a atencao passou a ser direcionada, sobretudo, para
o avanco em técnicas matematicas mais sofisticadas e focadas na andlise quantitativa
das imagens. Ja nos anos 90, alguns temas que comecaram a adquirir relevancia foram
analise de movimentacao de objetos, segmentacao de imagens, reconhecimento de faces e
computacao grafica. Nos anos 2000, dentre os temas que ganharam destaque, mencionam-
se os algoritmos de reconhecimento de imagens baseados em features, os modelos de
combinacao de imagens para criagao de texturas e os modelos de geragao de superficies
tridimensionais mais realista. Nesse periodo, como consequéncia da maior disponibilidade
de bases rotuladas na internet, houve, ainda, o inicio do crescimento na aplicacao de

técnicas de machine learning em problemas de visdo computacional (SZELISKI, 2022).

Ja a partir de 2010, houve uma intensificacao profunda dos avancos na area de visao
computacional, com os algoritmos sendo aprimorados tanto em termos de performance
quando de robustez e confiabilidade, o que permitiu que eles passassem a ser utilizados de

forma ampla em solugoes comerciais. Durante esse periodo, os elementos que contribuiram
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para o avanco foram diversos e potencializaram-se de maneira conjunta. Um primeiro fator
consistiu na disponibilizacao de bases de dados anotados de larga escala, como a ImageNet.
Conjuntamente a isso, houve um intenso aumento no poder computacional, viabilizado
pela aplicagao paralelizada dos algoritmos de aprendizado nas unidades de processamento
grafico (GPUs). Combinados, o acesso a dados em larga escala e a disponibilidade de
recursos computacionais para processar esses dados permitiram que modelos robustos de

deep learning fossem construidos e continuamente aprimorados (CHOLLET, 2021).

Como consequéncia, esses métodos de modelagem, que serao detalhados no tépico
seguinte, potencializaram a transformacao das solugdes tanto nas tarefas de reconhecimento
de imagens, que é o escopo do presente trabalho, quanto nas outras aplicagoes de visao
computacional, e passaram a ser utilizados de forma geral nos desenvolvimentos da
area. Além disso, viabilizaram que plataformas completas e complexas, envolvendo, por
exemplo, veiculos autonomos, realidades aumentadas e mapeamento e localizagdo de

objetos tridimensionais em tempo real pudessem ser implementadas (SZELISKI, 2022).

2.2 Deep Learning

Conceitualmente, deep learning consiste em uma subarea de machine learning, com
abas contemplando o processo de aprendizado, no qual o modelo é treinado para, a partir
dos inputs fornecidos, determinar a melhor representagao dos dados capaz de gerar os
outputs desejados (CHOLLET, 2021). Por outro lado, o que particulariza as abordagens
de deep learning é que, para elas, esse aprendizado é determinado pela sobreposicao
de multiplas camadas de representacao. Com essas sobreposigoes, cada nova camada
torna-se capaz de computar conceitos progressivamente mais complexos, combinados das
representagoes mais simples geradas nas camadas anteriores (GOODFELLOW; BENGIO;
COURVILLE, 2016). Exemplificando esse conceito para tarefas de reconhecimento de
imagens, a partir dos pizels fornecidos como inputs iniciais, os modelos de deep learning sao
capazes, por exemplo, de gerar representacoes de linhas e bordas, que, em seguida, podem
ser combinadas em contornos, formas e assim sucessivamente, até que o entendimento final

da imagem seja alcancado.

Em deep learning, o aprendizado dessa estrutura hierarquica de representacao
de dados ¢é viabilizado pelas neural networks. Como descrito por Chollet (2021), elas
consistem em modelos construidos pela sobreposicao de camadas de fun¢des matematicas,
com cada uma dessas camadas sendo responsavel por aplicar a transformacao de dados que
resultard na representacao de dados associada. Nesse processo, os pesos de cada camada
parametrizam a transformacio a ser aplicada, e o aprendizado do modelo consiste na
busca da melhor configuracao desses pesos, de tal forma que os outputs finais sejam, o
minimo possivel, divergentes dos targets desejados. Para mensurar essa divergéncia entre

predicoes e valores reais, os modelos de deep learning se baseiam no calculo de uma funcao
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de custo, selecionada conforme a natureza do problema modelado. E, por meio do processo
de backpropagation, essa funcao de custo é utilizada como feedback para o ajuste dos pesos

das camadas, que, progressivamente, sao corrigidos para minimizar o erro associado.

Partindo do contexto anterior, os proximos tépicos aprofundam em conceitos de
deep learning relevantes para o desenvolvimento do trabalho. Inicialmente, apresentam-
se as feedforward neural networks, abordagem base para os modelos de deep learning,
com fundamentos validos para diversas implementacoes, dentre as quais as CNNs. Em
seguida, aprofunda-se na explicagao do processo de treinamento dos modelos, introduzindo
alguns dos algoritmos de otimizacao aplicados, detalhando o método de backpropagation e

descrevendo algumas das fungoes de ativacao e de custo usualmente utilizadas.

2.2.1 Feedforward neural networks

Assim como descrito de uma forma mais ampla para os modelos de deep learning,
as feedforward neural networks sao geradas pela sobreposicao de camadas de fungoes mate-
maticas, compondo uma fungao final f que aprende o melhor conjunto de pesos W para se
aproximar da funcao f*, que associa um determinado input x a um output y (GOODFEL-
LOW; BENGIO; COURVILLE, 2016). Para um cenério com trés camadas, por exemplo,
esse comportamento pode ser representado pela expressao f(x) = fO(f@(fM(x))), em

que fM) corresponde & primeira camada, f? & segunda e assim sucessivamente.

Cada camada, além disso, pode ser composta por multiplas unidades, que atuam
de forma paralela e determinam os outputs dessa camada. Para isso, em cada unidade, os
inputs recebidos sao somados linearmente, sendo ponderados pelos seus respectivos pesos, o
que pode ser representada por z = w;x1 +waky +- - -+ Wy, +b = Wl x+0b, sendo w o vetor
de pesos, x o vetor de inputs e b o termo bias da soma. Ao resultado dessa combinagao,
aplica-se uma funcao de ativacdo nao linear, que é responsavel por gerar o output da
unidade, como representado por hy(x) = ¢(wx + b), em que ¢ corresponde & fungao
de ativacdo aplicada (GERON, 2022). E possivel, ainda, expandir essa expressio para
abranger todas as unidades da camada, como representado por hw ,(X) = ¢(XW + b),
em que W, X, b e hw, correspondem, respectivamente, as matrizes de pesos e inputs,
e aos vetores de bias e outputs da camada. Definido esse vetor hw ,(X) para a camada,
ele pode, em seguida, ser enviado como input para a proxima, repetindo, em cadeia, o

processo descrito até que os outputs finais sejam obtidos.

Para as feedforward neural networks, esse fluxo é sempre executado, até a predicao,
com as camadas sendo percorridas de forma aciclica e direcionada. Justamente por conta
disso, receberam a nomenclatura feedforward. Esse comportamento ¢é diferente, por exemplo,
das recurrent neural networks, que passam a contemplar conexoes de feedback, nas quais

os outputs de uma camada podem ser retroalimentados como inputs dessa propria camada

para as predigoes seguintes (GOODFELLOW; BENGIO; COURVILLE, 2016).
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2.2.2  Algoritmos de otimizagao

Para que o processo de aprendizado seja alcancado, um dos componentes chave
em deep learning consiste no algoritmo de otimizagao implementado, que torna possivel
atualizar os pesos do modelo de forma iterativa, minimizando a funcdo de custo associada.
De uma forma geral, os principais algoritmos utilizados possuem o método gradient descent

como base, tendo sido aprimorados a partir dele para tornar a otimizagao mais rapida e

eficiente (GERON, 2022).

Para o entendimento desse método, pode-se considerar, inicialmente, uma func¢ao
y = f(z). Dada essa funcao, sua derivada f’(x) permite determinar como pequenas
alteracoes de tamanho € no input geram a correspondente variacao no output, o que pode
ser representado por f(x+¢€) ~ f(z)+ef'(x). Partindo desse cenario, como apresentado por
Goodfellow, Bengio e Courville (2016), o método gradient descent consiste na minimizagao
de f(x) pelo deslocamento de x, em pequenos passos, na diregao oposta a derivada, sendo
que, no cenario com miltiplos atributos, esse método é aplicado pela movimentacao na
dire¢do oposta ao gradiente associado. Nesse caso, representado por V, f(x), o gradiente
¢é o vetor composto pelas derivadas parciais 8%1_ f(x), em que cada uma delas mensura o
quanto f é alterada quando cada um dos atributos x; sdo variados em x. Considerando
esses conceitos, o método gradient descent pode ser representado por x' = x — eV f(x),
sendo x’ os novos valores dos inputs apds a execugao do passo de tamanho €, usualmente

denominado learning rate.

Aplicado aos modelos de deep learning, o método anterior é utilizada para otimizar
os pesos W minimizando a fungao de custo L(W), avaliada para cada um dos m registros

do conjunto de treinamento. Nesse cenario, a atualizagao dos pesos é representada por:

W =W — e; i VwL(W;x®) (2.1)
i=1

A necessidade de computar a fun¢do de custo para todos os registros de treinamento
torna a abordagem anterior lenta, principalmente quando volume de dados é grande.
Aprimorando esse processo, a variagdo stochastic gradient descent (SGD) seleciona, em
cada atualizacao dos pesos, uma amostra aleatéria B, de tamanho m', do conjunto de
treinamento, sendo a amostra B e o hiperparametro m’ denominados, respectivamente,
minibatch e batch size. Para o SGD, a expressdo (2.1) passa a ser representada por

(GOODFELLOW; BENGIO; COURVILLE, 2016):

m/

1 .
W =W —e— > VwL(W;x) (2.2)
mo4

Além do SGD, o método Adam, nome derivado de adaptive moment estimation, é

aplicado, também, de forma recorrente para a otimizacao dos pesos dos modelos. Além
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de contemplar os beneficios do SGD, o método Adam é capaz de proporcionar uma
adaptacao individualizada do learning rate para cada um dos pesos, o que contribui para
uma convergéncia mais rapida durante o treinamento e evita oscilagoes indesejadas em
regioes proximas ao minimo. Para isso, calcula iterativamente dois atributos, denominados
momentos de primeira e de segunda ordem, que determinam a média e a variancia dos

gradientes e sao avaliados por meio de médias méveis com taxas de decaimento exponencial

(GERON, 2022).

2.2.3  Backpropagation

Aplicado de forma integrada ao algoritmo de otimizacao, o método backpropagation
permite que, em cada passo durante o treinamento, sejam calculados os gradientes da
fungao de custo em relagdo a cada peso do modelo. A partir disso, esses gradientes podem

ser utilizados pelo algoritmo de otimizacao para realizar a atualizacao dos pesos, seguindo a
abordagem descrita no tépico anterior (GOODFELLOW; BENGIO; COURVILLE, 2016).

A primeira etapa no método backpropagation, denominada forward pass, consiste em
seguir o fluxo de informacao descrito para as feedforward neural networks em 2.2.1, partindo
dos inputs e percorrendo as camadas intermediarias até a obten¢ao dos outputs da camada
de predicao. Ao final dessa etapa, calcula-se o erro geral da rede pela funcao de custo
definida para o modelo. Em seguida, inicia-se o préximo estagio, denominado backward
pass. Nele, aplicando o conceito de regra da cadeia definido em Calculo, determina-se,
inicialmente, o quanto cada conexao da camada final contribuiu para o erro de cada output
gerado. Finalizado esse estagio, o processo apresentado ¢ repetido retroativamente para as

conexoes das camadas anteriores, até as conexoes com os inputs iniciais (GERON, 2022).

Com essa abordagem, consegue-se propagar o gradiente de erro para cada peso e
termo bzas do modelo, permitindo que, com esses gradientes conhecidos, seja aplicado o
passo de otimizacao descrito em 2.2.2. Durante o treinamento, a execugao desses passos,
contemplando as etapas de backpropagation, aplicagao do algoritmo de otimizagao e
atualizacdo dos pesos do modelo é realizada para cada um dos minibatchs. Apds todos
os minibatchs terem sido avaliados, diz-se que uma época foi concluida. Pode-se, a partir
disso, repetir o processo por tantas épocas quanto forem necessarias, até que a métrica de

avaliacdo do modelo alcance seu estagio ideal.

2.2.4 Fungoes de ativagao

Como descrito para as feedforward neural networks, as fungoes de ativagao sao
aplicadas em cada unidade das camadas de transformacao dos dados, gerando o output da
unidade, representado por hy(x) = ¢(wlx + b). Além disso, sobretudo para as camadas
intermediarias, sao nao lineares, o que viabiliza que o modelo consiga se aproximar de uma

funcao f*, mesmo que ela apresente comportamento complexo e nao linear. Caso contrario,
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esse modelo estaria restrito a representacao de funcoes lineares, ainda que contemplasse
multiplas camadas (GOODFELLOW; BENGIO; COURVILLE, 2016).

Para as unidades das camadas intermedidrias, a rectified linear unit (ReLU),
expressa por ReLU(z) = max{0,z}, consiste em uma das fungoes de ativagio de uso mais
frequente. Além de preservar a capacidade de aprendizado para problemas ndo lineares,
em virtude da aplicacdo de uma transformacao nao linear nos inputs, a ReLU apresenta
comportamentos similares as fungoes lineares, o que torna o calculo dos gradientes mais
simples e rapido. Além disso, nao apresenta um limite superior para sua saida, o que
contribui para que os gradientes se mantenham consistentes. Em contrapartida, quando o
resultado da ativacado se torna nulo, por exemplo pelo recebimento de inputs negativos,

a unidade associada tornam-se incapaz de contribuir para o aprendizado do modelo
(GOODFELLOW; BENGIO; COURVILLE, 2016).

Para contornar essa limitacao, foram desenvolvidas variagoes da ReLLU, como as
abordagens leak ReLU e PReLU, que podem ser representadas por maz{az, z}. Essas
abordagens permitem que um output nao nulo seja gerado quando z é negativo, o que
viabiliza que a unidade se mantenha ativa e continue contribuindo para o processo de
aprendizado. Ao mesmo tempo, controlam esse output para que ele ndo seja excessivamente
negativo, o que poderia impactar a convergéncia do gradiente. Enquanto para a leak
ReLU « é um hiperparametro definido para o modelo; para a PReLLU, torna-se um novo

pardmetro do préprio modelo, aprendido ao longo do treinamento (GERON, 2022).

Além das abordagens anteriores, outras func¢oes de ativacao aplicaveis para as
camadas intermedidrias sao a logistica e a tangente hiperbdlica, embora tenham se tornado
menos frequentes apés a difusao da ReLLU e suas variantes. Também denominada sigmoid,
a fungao logistica é expressa por o(z) = 1/(1 + exp(—=z)), apresentando intervalo definido
entre 0 e 1. A fungdo tangente hiperbdlica, por sua vez, pode ser descrita como tanh(z) =
20(2z) — 1, possuindo intervalo entre -1 e 1. Embora sejam continuas e diferencidveis, o que
seria positivo para o treinamento, essas fungoes acabam saturando tanto para os valores
positivos quanto negativos de z, o que torna o aprendizado baseado em gradientes mais
dificil de ser alcancado (GERON, 2022). Por conta desse comportamento, passaram a ser
menos aplicadas diretamente como ativagao nas camadas intermediarias em feedforward
neural networks. Para outras abordagens de deep learning, como as recurrent neural
networks, ha outros requisitos e implementagoes que tornam o uso dessas fungoes de

ativagao mais adequado.

Para as unidades das camadas de outputs finais do modelo, a escolha da funcao de
ativacao esta atrelada ao tipo de problema explorado. Em particular no presente trabalho,
as abordagens de interesse sao as classificagoes multi-classes ou multirrétulos de imagens.
Em cenarios de classificagoes multi-classes, em que a predi¢ao estard associada a somente

uma das classes possiveis, aplica-se, usualmente, a funcao de ativacao softmax. Para isso,
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sendo h os outputs gerados pela ultima camada oculta, é realizada, inicialmente, uma
camada de predicoes lineares, que pode ser representada por z = W”h + b, em que W
e b correspondem, respectivamente, a matriz de pesos e ao vetor de termos bias dessa
camada. Cada um dos z; outputs estao associados a probabilidade de cada classe 7, mas

nao estao normalizados entre 0 e 1. Para realizar essa normalizacao, aplica-se a softmax,

como representado pela expressao (GOODFELLOW; BENGIO; COURVILLE, 2016):

softmax(z); = exp(z)

- exp(z) 23

Para cada classe 7, essa funcao de ativagao gerara como predi¢ao a probabilidade
dessa classe quando comparada as demais, de tal forma que a soma dessas probabilidades,

considerando todas as j classes, serd 1.

J& nos casos de classificagbes multirrotulos, em que a predicao pode estar associada
a mais de uma classe ao mesmo tempo, aplica-se, usualmente, a sigmoide. Assim como
na abordagem anterior, é realizada, inicialmente, uma camada de predigoes lineares, que
pode ser representada por z = W'h + b. Apés isso, aplica-se a sigmoide para cada
um dos z; outputs, como representado por o(z;) = 1/(1 4 exp(—z;)). Assim, cada um
desses outputs retornara um valor entre 0 e 1, representando a probabilidade da predicao
ser associada a cada classe i (GOODFELLOW; BENGIO; COURVILLE, 2016). Essa
abordagem contempla, também, os casos de classificagdo binaria. Para eles, havera somente
um output z e a probabilidade o(z) estimada serd da classe positiva, podendo-se calcular
1 — o(2) para encontrar a probabilidade da classe negativa (GERON, 2022).

2.2.5 Fungoes de custo

Como descrito para os métodos de otimizacao em 2.2.2; a funcao de custo, represen-
tada por L(W), proporciona a medida de comparacao entre os outputs gerados e os targets
esperados, definindo o valor a ser minimizado em cada passo de atualizacdo dos pesos
do modelo. Nos problemas envolvendo classificacoes de imagens, as principais fungoes de
custo aplicadas sao adaptacoes do conceito de cross-entropy, dentre as quais a categorical
cross-entropy para classificagoes multi-classes e a binary cross-entropy para as classificagoes
binarias e multirrétulos. Originada do campo da Teoria da Informacao, a cross-entropy é
expressa por H(p,q) = — >, p(x)logq(x) e mensura o quanto uma distribui¢ao estimada
de probabilidades ¢(x) é similar & distribuigdo de probabilidades real dos targets p(x),
penalizando os casos que possuem um valor elevado para p(z), mas ndo apresentaram uma
estimativa associada elevada para ¢(x) (GERON, 2022).

Aplicando esse conceito para um input i que pode ser classificado entre K classes,
sendo p¥ e y® os vetores com as probabilidades estimadas e as classificacoes reais de

cada classe k, a cross-entropy desse input pode ser representada por:
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H(y", i(: log " (2.4)

Nos problemas multi-classe, em que as classes sdo mutuamente exclusivas, y*) serd
um vetor one-hot, com valor 1 para a classe valida e 0 para as demais. Nesse caso, sendo
k a classe vélida, a expressdao 2.4 pode ser simplificada para H(y®,p®)) = — log 91,
abordagem denominada, também, de categorical cross-entropy. Ja nos problemas de
classificagdo bindria, pode-se tanto manter a aplicacdo da expressao 2.4, quando as classes
positiva e negativa estiverem representadas em um vetor one-hot, quanto ajustar a expressao
para H(y®,p%) = —[yD log p@ + (1 — y@)log(1 — p™)], abordagem denominada binary
cross-entropy. Por fim, nos problemas multirrétulos, pode-se tanto manter a expressao
2.4, sendo y, nesse caso, um vetor composto por 1 em cada classe valida e 0 nas demais
posicoes, quanto avaliar cada classe individualmente por meio da binary cross-entropy,
somando, em seguida, os resultados obtidos (GERON, 2022).

E possivel, também, generalizar a expressido 2.4 para todas as m’ instancias do

manibatch, o que permite obter a seguinte fun¢ao de custo, dados os W pesos do modelo:

’

K
L(W >y log it (2.5)
i=1 k=1

3

Como descrito nas se¢des anteriores, essa funcao de custo pode ser integrada ao
processo de backpropagation para determinar o gradiente relacionado a cada um dos pesos,
habilitando a aplicacao dos algoritmos de otimizacao e a atualizagdo desses pesos ao longo

do processo de treinamento.

2.3 Convolutional Neural Networks

Como descrito por Goodfellow, Bengio e Courville (2016), as CNNs sao definidas
como neural networks que aplicam a operacao de convolugao nas suas camadas, sendo
especializadas para processar dados que, como imagens, possuem estrutura topolégica
em grid. Enquanto nas neural networks com camadas totalmente conectadas os padroes
sao aprendidos globalmente a partir dos inputs, com os outputs de cada camada sendo
associados a todos os inputs da camada anterior, pelas camadas de convolucao, viabiliza-se
o aprendizado de padroes locais. Para isso, elas apresentam um comportamento similar ao
da Figura 1, apresentada na pagina seguinte. Por meio de um filtro, denominado kernel,
que possui, por exemplo, altura f, e largura f,,, percorre-se a camada de input, aplicando
esse filtro ao longo dessa camada de tal forma que cada output gerado seja o produto
dos pesos do kernel pelos inputs da regiao em que ele estd sendo aplicado. Realizado esse
processo, denomina-se como feature map a camada formada pelo conjunto de outputs da

aplicacao do kernel.
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Figura 1 — Exemplo do processo de convolugao
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Fonte: Goodfellow, Bengio e Courville (2016)

Na figura anterior, foi exemplificado um cenario em que os inputs iniciais eram
formados a partir de uma camada bidimensional. Em imagens, no entanto, ¢ comum que
esses inputs sejam tridimensionais, associados, por exemplo, as cores do sistema RGB.
Nesse caso, a diferenca é que, inicialmente, o kernel é aplicado individualmente a cada uma
das camadas de cores, denominadas channels. Em seguida, os resultados correspondentes
sao somados para gerar um tunico valor na camada de outputs, assim como ocorreria
no cendrio bidimensional (GERON, 2022). De forma similar, 6 comum que a camada
de convolugao seja formadas por multiplos filtros. Nesse contexto, cada filtro aplicara o
mesmo processo descrito anteriormente e gerara os respectivos outputs, de tal forma que,
apos a aplicacao de todos os filtros, essa camada de convolugao resultard em uma camada
tridimensional, com a profundidade correspondendo a quantidade de filtros aplicados. Em
seguida, essa camada de outputs pode ser enviada como input para uma nova camada
convolucional, com o processo ocorrendo de forma analoga a anterior, com os novos inputs

sendo tratados da mesma forma como descrito para os channels (GERON, 2022).
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Para as camadas de convolugao, dois conceitos adicionais relevantes sao denominados
stride e padding. O stride é um parametro que define qual serd o deslocamento realizado
pelo kernel a medida em que percorre os inputs. Na Figura 1, por exemplo, é possivel
avaliar que os deslocamentos foram de uma unidade. Menciona-se que, nao necessariamente,
os deslocamentos horizontal e vertical precisam receber o mesmo valor. E possivel, por
exemplo, que o stride horizontal seja de duas unidades, enquanto o vertical de somente
uma. Ja o padding é um parametro que controla os efeitos de borda, permitindo definir se
0s outputs apresentarao, ou nao, as mesmas dimensoes dos inputs recebidos (CHOLLET,
2021). Partindo da Figura 1, nota-se um caso com padding ausente. Nela, os célculos foram
restritos a regiao de inputs. Como consequéncia, as dimensoes foram reduzidas de 3x4 nos
inputs para 2x3 nos outputs. Caso o parametro padding fosse aplicado, seria como se as
bordas dos inputs fossem preenchidas com valores nulos, viabilizando a aplicacao do kernel

nessas regioes, de tal forma que as dimensoes do output seriam, também, 3x4.

Além das convolugbes, um segundo tipo de camada usualmente presente nas CNNs
sao as poolings. Embora continuem extraindo caracteristicas locais por meio de janelas
que percorrem os inputs, elas fazem isso pela calculo de uma func¢do de agregacao nessa
regiao avaliada, retornando como output, por exemplo, o valor maximo (maz pooling) ou
médio (average pooling) da regidao. Com essas camadas, torna-se possivel diminuir o custo

computacional do modelo e a quantidade de parametros analisados (GERON7 2022).

Pela Figura 2, associada a VGG16, é possivel observar um exemplo de arquitetura

contemplando as camadas mencionadas.

Figura 2 — Arquitetura - VGG16
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Fonte: Chollet (2021)

Nela, nota-se uma configuragao modular e hierarquica. Partindo dos inputs, a rede
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¢é formada por blocos de duas ou trés camadas convolucionais e uma camada de maz
pooling que se sucedem. Observa-se, também, que esses blocos se distribuem formando
uma estrutura similar a uma pirdmide, com o nimero de filtros aumentando a medida em
que a profundidade das camadas se torna maior, a0 mesmo tempo em que os tamanhos dos
feature maps diminuem. Concluida essa sequéncia de blocos com camadas convolucionais
e poolings, é definido o topo da rede, que é composto por duas camadas totalmente
conectadas e pela camada final de predicao. Apresentada para a VGG16, esse padrao
de blocos de camadas que se organizam em uma estrutura similar a uma piramide é
uma configuracgao tipica para CNNs. Com esse padrao, a medida em que o tamanho dos
features maps diminui e a profundidade das camadas aumenta, é ampliada de capacidade

da rede em combinar as features das camadas precedentes e gerar niveis mais avancgados
de abstracao (CHOLLET, 2021).

Embora o aumento da profundidade proporcione capacidade de abstragao para a
rede, a medida em que ela se torna mais profunda, amplia-se, também, o ruido presente
nas camadas. Como consequéncia, quando esse ruido se torna excessivo, a rede perde
capacidade de atualizagao correta dos gradientes e o processo de backpropagation deixa
de funcionar. Para corrigir essa limitacao, os modelos da familia ResNet introduziram os
blocos residuais. Esses blocos consistem em estruturas que armazenam os valores dos inputs
recebidos e, apds a aplicacao das camadas associadas, adicionam, pelas conexoes residuais,
os inputs anteriormente armazenados aos outputs gerados, enviando o resultado dessa
adicao como input para as camadas seguintes. Nessa abordagem, as conexoes residuais
contribuem como um atalho de informacao, evitando o impacto de blocos que poderiam
gerar ruidos excessivos e, com isso, permitindo que a atualizagao dos gradientes possa
acontecer adequadamente (CHOLLET, 2021). Nas etapas de modelagem do trabalho, as
conexoes residuais foram exploradas por meio da ResNet50, configuracao que aplica os

conceitos mencionados e contempla 50 camadas de convolucao.

Além das abordagens anteriores, duas estratégias adicionais de modelagem, cujos as-
pectos conceituais sao apresentados a seguir, sao exploradas no trabalho visando contribuir
para ganhos de performance nas classificagoes. A primeira delas corresponde a incluséo,
ao longo da rede, de camadas de batch normalization, que conseguem proporcionar uma
normalizac¢ao adaptativa do conjunto de dados. Para que isso seja possivel, durante o
treinamento, essa camada realiza a normalizacao de seus inputs considerando os dados
do batch vigente na etapa sendo treinada. J& na avaliacao, a normalizacao é feita pela
média mdével exponencial dos batches avaliados no treinamento. Além de tornar os inputs
mais similares entre si, o que contribui para a capacidade de generalizacao do modelo, as
camadas de batch normalization, assim como as conexoes residuais, facilitam a propagacao
dos gradientes ao longo da rede, permitindo, também, que configuragbes mais profundas
possam ser construidas (CHOLLET, 2021). Justamente por conta disso, é comum que essa

camada componha as arquiteturas mais robustas. Isso ocorre, por exemplo, na ResNet50,
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que combina conexoes residuais e batch normalization em cada bloco.

Por fim, a segunda estratégia adicional explorada correspondeu a inclusao de etapas
de dropout anteriormente a camada de predi¢ao. Como apresentado por Géron (2022),
essa abordagem consiste em uma técnica de regularizacdo na qual, em cada etapa do
treinamento, as unidades de uma camada apresentam probabilidade p de nao estarem
ativas e de nao contribuirem para os outputs gerados. Como consequéncia dessa abordagem,
o que se nota é que ela aprimora a capacidade de aprendizado da camada de uma forma
geral. Isso ocorre pois, como em algum momento qualquer uma das unidades pode estar
desativada, o modelo nao pode depender de unidades especificas, o que contribuiu para
que todas passem a apresentar uma relevancia mais equilibrada na camada, auxiliando o

modelo a se tornar mais generalizavel.

Concluida a descricao dos fundamentos tedricos, aborda-se, no tépico seguinte, a

metodologia do estudo, detalhando as atividades realizadas ao longo do trabalho.
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3 METODOLOGIA

O diagrama a seguir ilustra a sequéncia de atividades realizadas no trabalho, que

sao descritas com maiores detalhes nos préximos topicos.

Figura 3 — Sequéncia de atividades
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Fonte: O autor (2023)

3.1 Caracterizacdao do problema

Compondo a primeira etapa do estudo, a caracterizacao do problema abrangeu
as atividades necessarias para direcionar e delimitar o escopo dos desenvolvimentos. Foi
nesse momento em que se selecionou como ponto de partida para o trabalho o desafio

Planet: Understanding the Amazon from Space, proposto na plataforma Kaggle em 2017
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(GOLDENBERG et al., 2017). Os dados desse desafio contemplam 81.148 imagens da Bacia
Amazonica, coletadas entre janeiro de 2016 e fevereiro de 2017 por meio dos satélites Flock
2 da companhia Planet, sendo que 40.479 delas estao rotuladas e foram utilizadas para
treinamento e a validagao dos modelos. Individualmente, cada imagem possui dimensoes de

256x256 pizels, cobrindo areas de 89,72 hectares. No geral, a drea abrangida pelo conjunto

de todas as imagens ¢ de 19.877,88 hectares (GOLDENBERG et al., 2017).

Definido o conjunto de dados, a etapa seguinte do estudo consistiu em realizar a
analise exploratoria, que, como apresentado na secao de resultados, permitiu entender
a distribuicao dos rétulos e as caracteristicas das imagens avaliadas. Foi a partir dessa
analise que se definiram os objetivos especificos do trabalho, como detalhado na secao 1.2.

Apés isso, iniciaram-se as etapas de modelagem, seguindo as estratégias descritas a seguir.

3.2 Modelagens iniciais

Para as versoes iniciais de modelagem, as imagens do conjunto de treinamento foram
carregadas em memoria de uma tnica vez. Para que isso fosse possivel com os recursos
computacionais disponiveis (processador 12th Gen Intel® Core™ i5-12500H, 16GB de
RAM), foi necessério reduzir as dimensoes durante o carregamento, transformando-as dos
256x256 pizels iniciais para 64x64. Apds isso, as imagens foram normalizadas, tendo seus
pizels convertidos para valores entre 0 e 1. Concluindo o pré-processamento, realizou-se a
segregacao dessas imagens nos conjuntos de treino e validacao, optando-se por distribui-las

de forma aleatéria, selecionando 80% dos dados para treino e 20% para validagao.

Realizados os pré-processamentos anteriores, seguiu-se com a construgao dos mode-
los, que foram configurados para predizerem todos rétulos das imagens de uma tnica vez.

As alternativas de modelagem exploradas foram as seguintes:

(1) Extracao de features pela VGG16, predi¢ao por um classificador kNN;
e (2) Transfer learning pela VGG16;
e (3) Transfer learning pela ResNet50;

e (4) CNN com camadas definida por experimentagao, sem transfer learning.

Menciona-se que, por ser um problema de classificacdo multirrétulo, a construgao
dos modelos seguiu os direcionamentos das se¢des 2.2.4 e 2.2.5, aplicando a sigmoide como
funcao de ativagao na camada de outputs e a binary crossentropy como funcao de custo.
Além disso, utilizou-se a Fj score como métrica de avaliacao. Recomendada nas orientacoes
da competicao, trata-se de uma medida que pondera precisdo e revocac¢ao e permite
controlar a influéncia do desbalanceamento das classes. Sendo a precisao representada por

p e a revocagao representada por r, a Fg pode ser calculada como:
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p-r
(B%-p)+r

Todas as abordagens contemplaram, também, o processo de early stopping para

Fy=(1+4%)- (3.1)

controlar o overfitting dos modelos. Nas aplicagoes de transfer learning, além disso, foram
testadas as inclusoes de camadas de batch normalization e dropout. Os desempenhos de

cada abordagem encontram-se detalhados em 4.2.

3.3 Modelagens finais

Apoés analisar os resultados iniciais, a etapa seguinte do estudo consistiu em mapear

e implementar melhorias no pré-processamento dos dados e na configuragao dos modelos.

Em relacdo ao pré-processamento, a primeira melhoria consistiu em modificar o
modo de carregamento das imagens para ser realizado por meio de batches. Essa modificagao
permitiu que o consumo de memoria no treinamento fosse otimizado e que as dimensoes das
imagens fossem aumentadas. Realizaram-se, nesses sentido, comparac¢oes dos modelos entre
diferentes dimensoes, variando-as desde 64x64 até 224x224. Em seguida, implementou-se
a aumentacao de dados para o conjunto de treinamento, variando o zoom das imagens,

realizando flips horizontais e verticais e rotacionando-as para valores multiplos de 90 graus.

Em relagao as melhorias na configuracao dos modelos, testou-se, inicialmente,
ajustar o parametro learning rate para que ele fosse reduzido ao longo do treinamento,
conforme as épocas nao contribuissem com melhorias na métrica de avaliagdo. Apés isso,
testou-se explorar dois modelos independentes, sendo um responsavel por predizer as
condigoes atmosféricas e o outro os elementos da superficie. Menciona-se que, como o
modelo para a predi¢ao das condigoes atmosféricas passou a estar associado a um problema
multi-classe, com rétulos mutuamente exclusivos, as fungoes de ativagdo da camada final e
a funcao de custo foram ajustadas para a softmaz e a categorical cross-entropy. Por fim,
para o modelo dos elementos de superficie, testou-se variar o threshold de classificacao das

imagens entre cada um dos rétulos, que inicialmente estava definido em 0,5.

Considerando os experimentos descritos, os desempenhos proporcionados por cada

abordagem encontram-se detalhados em 4.3.
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4 APRESENTACAO E ANALISE DOS RESULTADOS

Para detalhar os resultados do trabalho, inicialmente apresentam-se aspectos
identificados na andlise exploratoria que contribuiram para direcionar o desenvolvimento
dos modelos. Apds isso, discutem-se os resultados obtidos com as modelagens, construidas

seguindo as estratégias descritas nas secoes 3.2 e 3.3.

4.1 Andlise exploratoria
O objetivo inicial com a analise exploratéria foi entender a distribuicao dos réotulos
das imagens. Como listado abaixo, foram encontradas 17 classes, divididas em trés grupos:
» Condicoes atmosféricas: clear, partly cloudy, cloudy e haze.

o Elementos comuns de superficie: primary, agriculture, water, habitation, road, culti-

vation e bare ground.
« Elementos raros de superficie: slash burn, selective logging, blooming, conventional
mine, artisinal mine e blow down.
Para os rétulos de condigoes atmosféricas, a contagem de ocorréncias de cada classe

no conjunto de treinamento pode ser avaliada no grafico apresentado abaixo.

Figura 4 — Ocorréncias dos rétulos de condigoes atmosféricas
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Fonte: O autor (2023)
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Por esse grafico, nota-se que mais de 70% das imagens estao associadas ao rétulo
clear, ndo apresentando nuvens ou neblinas. Avalia-se, ainda, que as imagens totalmente
nubladas sao as menos frequentes, ocorrendo em 5% dos casos. Para elas, os rétulos
de superficie ndo sao classificaveis. Isso pode ser observado, por exemplo, na imagem
cloudy da Figura 5. Além disso, como pode ser avaliado também pela Figura 5, para as
condicoes atmosféricas, cada imagem pode estar associada a somente uma das classes. Foi,
justamente, com a validagao desse comportamento que a construcao de modelos segregados
para condi¢Oes atmosféricas e elementos de superficie foi mapeada como uma estratégia

adequada para ser explorada no trabalho, como sera detalhado em 4.3.

Figura 5 — Exemplos de imagens para rétulos de condicoes atmosféricas

clear partly_cloudy haze cloudy

Fonte: Goldenberg et al. (2017)

Ja para os elementos de superficie, as distribui¢oes dos rétulos nos cenarios de

elementos comuns e raros podem ser observadas nos graficos da Figura 6.

Figura 6 — Distribuicao dos rotulos para os elementos de superficie
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Fonte: O autor (2023)

Um primeiro aspecto observavel pelo grafico de elementos comuns é que o total



39

de classifica¢oes, somado em 74.309, é superior a quantidade de imagens do conjunto de
treinamento, composto por 40.479 imagens. Isso evidencia que, diferentemente do ocorrido
com as condi¢des atmosféricas, uma mesma imagem pode abranger multiplos rétulos de
superficie. Pode-se avaliar, ainda, que o rétulo de vegetacdo primaria é o mais comum,
ocorrendo em 93% das imagens. Comparado & soma de todos os demais desse grupo, esse
rotulo é cerca de 2,3 vezes mais presente. [sso sugere ser frequente na base de treinamento a
ocorréncia de imagens similares a partly cloudy da Figura 5, que possui somente vegetacao
priméaria como elemento de superficie. Esse desbalanceamento entre as classes justifica,
inclusive, a escolha da Fjz como métrica de avaliacao, ja que, com ela, consegue-se mensurar
de forma equilibrada o resultado geral, sem que ele seja excessivamente influenciado pela

classe mais frequente.

Ja pelo gréfico de elementos raros, nota-se que, de fato, os rétulos desse grupo estao
significativamente menos presentes nas imagens de treinamento do que os rétulos comuns.
O rétulo selective logging, por exemplo, que é o rotulo raro de maior frequéncia e esta
associado a atividade de remocao de arvores selecionadas da vegetagao primaria, é cerca de
2,5 vezes menos frequente do que o rétulo bare ground, que é o de menor ocorréncia para os
elementos comuns e se associa ao cenario de desmatamento completo, com presenca de solo
exposto. Ao comparar a soma dos rotulos raros com a soma dos rétulos comuns, nota-se
que, mesmo sem considerar a classe de vegetacao primaria, os rétulos raros estao 25 vezes
menos presentes no conjunto de treinamento. Como consequéncia, como serd apresentado

nos resultados dos modelos, esses rotulos sao os mais dificeis de serem preditos.

A Figura 7, por sua vez, ilustra a distribuicao da quantidade de rétulos de superficie

por imagem para os casos em que a condi¢ao atmosférica nao é totalmente nublada.

Figura 7 — Histogramas da quantidade de rétulos por imagem
(a) Elementos comuns de superficie (b) Elementos raros de superficie
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Pode-se avaliar, nesses histogramas, que, para os elementos raros de superficie,
somente 3,6% das imagens possuem algum rétulo e 0,06% apresentam mais de 1. J& para os
elementos comuns, nota-se que somente 3 imagens nao apresentam rotulos e que, embora o
cendrio com uma tUnica classe seja o mais recorrente, cerca de 48% das imagens apresentam

mais de uma classe, sendo frequentes cenérios de 2, 3 ou 4 rétulos.

Ja a figura seguinte ilustra a matriz de correlagdo entre os elementos de superficie,

permitindo avaliar quais rétulos tendem a ocorrer de forma conjunta ou oposta entre si.

Figura 8 — Matriz de correlagao entre os elementos de superficie
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Fonte: O autor (2023)

Nessa matriz, nota-se que as maiores correlacoes sao entre agriculture e road, com
valor 0,48, e entre habitation e road, com valor 0,44. E interessante avaliar, também,
que esses rotulos apresentam correlagoes altas com a classe cultivation, como pode ser
verificado, em especial, para o rétulo agriculture, para o qual a correlacao é de 0,34. Os
valores elevados de correlagao para esse conjunto de classes ¢ coerente, ja que, combinadas,
elas descrevem contextos de ocupac¢do humana nos locais das imagens analisadas. A
matriz permite avaliar, também, que o menor valor de correlacao, de —0,08, ocorre entre
primary e bare ground, cenario que pode ser explicado pelo rotulo bare ground representar,

como mencionado anteriormente, situacoes em que a vegetagao primaria ¢ completamente
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retirada, resultando em solo exposto. Para os elementos raros de superficie, duas correlagoes
mostram-se particularmente interessantes. A primeira delas, com valor 0,11, é entre slash
burn e cultivation, podendo ser explicada pelas atividades de corte e queimada, mesmo que
ilegalmente, serem muitas vezes aplicadas préximas as regioes de cultivo para que a regiao
de producao possa ser expandida. A segunda correlacao que se destaca, com valor 0,17, é
aquela entre artisinal mine e water, que pode ser explicada pelo termo artisinal mine estar

associado as atividades de garimpo, que tendem a ocorrer proximas aos leitos d’agua.

Por fim, os exemplos de imagens apresentadas seguintes permitem visualizar alguns

dos cenarios descritos nas analises das correlagoes.

Figura 9 — Exemplos de imagens para rétulos de superficie

(a) (b) (c)

(f)

Fonte: Goldenberg et al. (2017)

Nesse sentido, nas imagens (b) e (c), podem ser observadas regides de agricultura,
cultivo, habitagdo e estrada. Na imagem (d), é possivel avaliar um exemplo de solo exposto,
préximo a uma regiao de vegetagdo com degradagao progressiva. Ja nas imagens (a) e
(e), podem ser visualizadas ocorréncias de queimadas préximas as regides de vegetacao

primaria e cultivo. Por fim, na imagem (f), é possivel avaliar uma regido de garimpo.
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4.2 Resultados dos modelos iniciais

Apresentada a andlise exploratéria, detalham-se, a seguir, os resultados dos modelos
iniciais. Nessa etapa, como mencionado em 3.2, as imagens de treinamento foram carregadas
em memoria de uma vez, reduzidas dos 256x256 pizels iniciais para 64x64. Do total de
40.479 imagens, selecionaram-se, aleatoriamente, 32.383 para compor o conjunto de treino

e 8.096 o de validacao. As estratégias de modelagem foram:

(1) Extracao de features pela VGG16, predi¢ao por um classificador kNN;
 (2) Transfer learning pela VGG16;
e (3) Transfer learning pela ResNet50;

e (4) CNN com camadas definida por experimentagao, sem transfer learning.

Nas abordagens (1) a (3), utilizaram-se os pesos da ImageNet para iniciar o treino
dos modelos. Além disso, para (1), as features foram extraidas da camada block5__pool
da VGG16, a tultima antes do topo da rede. Ja para (2) e (3), nos primeiros modelos,
congelaram-se as camadas anteriores ao ultimo bloco, realizando o treinamento nesse bloco
e no topo, que, nas duas abordagens, foi formado pelas seguintes camadas: global average
pooling, densa com 512 unidades (ativagao relu) e densa com 17 unidades (camada final de

predi¢ao). Para o modelo (5), foi construida a arquitetura representada na Tabela 1.

Tabela 1 — Arquitetura da CNN definida por experimentacao

layer shape
conv2d (None, 64, 64, 32)
conv2d (None, 64, 64, 32)
max_ pooling2d (None, 32, 32, 32)
conv2d (None, 32, 32, 64)
conv2d (None, 32, 32, 64)
max_ pooling2d (None, 16, 16, 64)
global average pooling2d (None, 64)
dense (None, 128)
dense (None, 17)

Fonte: O autor (2023)

No gréfico 10, ilustram-se os resultados das abordagens (1) a (4) nesse cenario inicial.
Nessa figura, nota-se que a CNN definida por experimentagao apresentou o melhor resultado
no conjunto de validacdo, seguida da VGG16, com 1,2% de diferenca na performance entre
elas. Um aspecto interessante, também, foi a diferenca na quantidade de épocas necessarias
para que o melhor resultado fosse alcangado nessas abordagens. Enquanto para a VGG16

o aproveitamento dos pesos pré-treinados da rede permitiu que a melhor métrica fosse
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alcancada apds somente 5 épocas; para a CNN experimental, foram necessarias 31 épocas.
Como consequéncia, embora cada época da VGG16 fosse cerca de 4 vezes mais demorada
do que a da CNN experimental, ao avaliar o cenario geral, a VGG16 exigiu um tempo

total de treinamento 58% menor do que aquele da CNN experimental.

Figura 10 — Resultados dos modelos para o cenario 1 das modelagens iniciais
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Pela Figura 10 é possivel avaliar, ainda, que a ResNet50 foi a abordagem de pior
resultado nesse cendrio inicial. Esse comportamento pode ser justificado por ela ser uma
rede de maior complexidade e pelo uso dos seus parametros pré-treinados ser diretamente
influenciado pelas dimensoées iniciais da imagem. Nesse sentido, como nesse cenério foi
necessario reduzir substancialmente as dimensoes, isso impactou diretamente a performance
dessa arquitetura e contribuiu para que outras modelagens mais simples, em especial a
abordagem (4), apresentassem resultados superiores. Complementando essa anélise, os

graficos seguintes apresentam as curvas de aprendizado das abordagens (3) e (4).

Figura 11 — Curvas de aprendizado dos modelos
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Por meio deles, pode-se notar que enquanto as curvas de treino e validagao progridem
de forma conjunta para a CNN experimental, reduzindo gradualmente os erros do modelo;
para a ResNet, os resultados na validagao sao piores do que os de treino em todas as
épocas, existindo um descolamento entre as curvas que se expande ao longo do treinamento.
Observa-se, ainda, que o resultado no conjunto de validacao é irregular, como uma oscilagao
significativa na performance entre as épocas. Em conjunto, esses aspectos reforcam o
entendimento de que o uso de transfer learning pela ResNet50 nao foi uma abordagem
adequada para classificar as imagens nesse primeiro cenario, caracterizado pela reducao

das dimensoes dos inputs e pelo congelamento dos parametros anteriores ao ultimo bloco.

A Figura 12, por sua vez, apresenta os resultados da aplicacao da VGG16 e da
ResNet50 para trés novas configuracoes. No cendrio (a), os pesos da ImageNet continuaram
sendo utilizados no inicio do treinamento, mas descongelaram-se todos os blocos da
rede, permitindo que todos os parametros fossem atualizados desde a primeira época. Na
configuragao (b), incluiu-se & modificagao do cenario (a) uma camada de batch normalization
para a leitura dos inputs. Por fim, além das mudancas da configuragao (b), o cenario (c)

adicionou no topo da rede, antes da predi¢ao, uma camada de dropout com valor 0,15.

Figura 12 — Resultados dos modelos iniciais para as configuracoes avaliadas
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Fonte: O autor (2023)

Por esses graficos, avalia-se, inicialmente, que o resultado da ResNet50 melhorou de
forma relevante ja no cenério (a), avangando em 20% em relacao a Figura 10. Menciona-se,
também, que esse ganho de performance esta em linha com as discussoes apresentadas
sobre o problema de compatibilidade desse modelo a reducao nas dimensoes das imagens, ja
que, com a modificacao do cendrio (a), os pardmetros dos blocos mais préximos aos inputs
iniciais tiveram liberdade para serem retreinados, ajustando-se as imagens fornecidas. A
inclusao das camadas de batch normalization e dropout contribuiram, também, para ganhos
de performance no uso da ResNet. No entanto, como se observa na Figura 10, esses ganhos

foram menos representativos do que o proporcionado pelo descongelamento dos blocos.

Ja para a VGG16, observa-se que a configuracao (b) foi capaz de proporcionar

os melhores resultados, com um ganho de 2,.8% em relacao a Figura 10. Essa maior
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performance, em contrapartida, exigiu um tempo total treinamento aproximadamente
4 vezes maior. De maneira mais detalhada, enquanto no contexto da Figura 10 foram
necessarias 8 épocas, com cerca de 4 minutos cada, para completar o treinamento; para a
configuragao (b), foram necessarias 15 épocas de, aproximadamente, 8 minutos. Menciona-
se, também, que esse aumento no tempo esteve associado, sobretudo, ao descongelamento
dos blocos, ja que esse comportamento ocorreu de forma similar no cenério (a), para o qual
também foram necessdrias 15 épocas de 8 minutos durante o treinamento. E interessante
avaliar, ainda, que o modelo composto pela VGG16 na configuracao (b) foi aquele com
o melhor resultado geral no contexto dos modelos iniciais, proporcionando um ganho de
1,5% na performance em relagao ao resultado da CNN experimental. Na Tabela 2, sao

detalhados os resultados desse melhor modelo para cada rétulo.

Tabela 2 — Detalhamento do resultado por rétulo

Grupo Rétulo Casos (treino) Casos (validacio)  Fj
clear 22.703 5.728 0,970
Condigoes cloudy 1.694 395 0,774
atmosféricas haze 2.164 533 0,648
partly_cloudy 5.821 1.440 0,903
agriculture 9.874 2.441 0,852
bare ground 687 175 0,007
Elementos cultivation 3.613 864 0,449
de superficie habitation 2.917 743 0,672
communs primary 30.006 7.507 0,989
road 6.503 1.568 0,793
water 5.952 1.459 0,650
artisinal mine 269 70 0,469
blooming 268 64 -
Elementos blow__down 73 25 -
de superficie conventional mine 78 22 -
raros selective_logging 279 61 -
slash burn 162 47 -

Fonte: O autor (2023)

Nela, observa-se, inicialmente, que os elementos raros de superficie possuem valores
ausentes de Fj. Isso indica que, pela baixa ocorréncia desses rétulos no treino, com excegao
da classe artisinal mine, o modelo nao aprendeu a identificar os rétulos desse grupo. E,
mesmo para a classe artisinal mine, a performance foi baixa, como se nota pelo valor 0,469
de Fj apresentado na tabela. Aprofundando na analise dos erros dessa classe, a Tabela 3
detalha a contagem dos rotulos reais e preditos para as imagens que possuiam o elemento
artisinal mine. Por ela, avalia-se que o modelo identificou cerca de 43% das ocorréncias desse
rotulo. Observa-se, além disso, que os valores preditos das classes agriculture, habitation e
road sdo maiores do que os reais. Isso indica que, influenciado pelo desbalanceamento das

classes e por aspectos de similaridade visual, nas situagoes em que o modelo ndo identificou
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o rotulo artisinal mine, ele interpretou a presenca desse elemento como se fosse associada

a essas outras trés classes, mais frequentes no conjunto de treino.

Tabela 3 — Classes reais e preditas para imagens com rétulo artisinal mine

artisinal mine agriculture habitation road

Real 70 11 2 21
Predito 30 20 36 43

Fonte: O autor (2023)

Nas imagens da Figura 13, ¢ possivel avaliar trés desses casos de inversao da
classificagdo do rétulo artisinal mine. Nas imagem (a), o modelo confundiu a regiao de
garimpo com os elementos agriculture, road e habitation. J4 nas imagens (b) e (c), as

inversoes ocorreram com os elementos road e habitation.

Figura 13 — Exemplos de imagens artisinal mine com classificagao invertida

(a) (b) . (c)

Fonte: Goldenberg et al. (2017)

Quanto aos elementos comuns de superficie, na Tabela 2, observa-se que os rotulos
bare ground e cultivation foram os mais dificeis de serem preditos. Para eles, assim como
realizado com o artisinal mine na analise dos erros, avaliaram-se as contagens reais e
preditas para as imagens em que essas classes estavam presentes. Em relacao ao bare
ground, nota-se, na Tabela 4, que o modelo conseguiu identificar apenas 1 das ocorréncias
do roétulo, confundindo-o, principalmente, com a classe agriculture. Esse comportamento
pode ser justificado pelo desbalanceamento entre essas classes no treino e pela existéncia
de aspectos de similaridade visual, que ocorrem, sobretudo, quando a presenca de solo

exposto nao ¢é tao intensa e se assemelha a regides em estagios iniciais de producao agricola.

Tabela 4 — Classes reais e preditas para imagens com rétulo bare ground

bare ground agriculture habitation primary road

Real 175 45 35 142 57
Predito 1 141 53 172 7

Fonte: O autor (2023)
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Ja para o elemento cultivation, verifica-se, pela Tabela 5, que o modelo encontrou
cerca de 42% das ocorréncias do rétulo e que os cendrios de classificagdo errada aconteceram
com o modelo confundindo esse elemento com agriculture, habitation e road. Para esses erros,
além de aspectos de similaridade visual, o que pode ter contribuido sdo, como discutido na
analise exploratéria, as maiores correlagoes existentes entre o rétulo cultivation e as classes
agriculture, habitation e road. Como mencionado, nas imagens que descrevem regioes de
ocupacao humana, é comum que esses rotulos ocorram de forma conjunta. Isso pode ter

gerado um viés no conjunto de treino, provocando o maior erro na etapa de validacao.

Tabela 5 — Classes reais e preditas para imagens com rétulo cultivation

cultivation agriculture habitation road

Real 864 656 182 238
Predito 364 720 237 293

Fonte: O autor (2023)

Na Figura 14, ilustram-se imagens em que o modelo nao foi capaz de identificar os
elementos bare ground e cultivation. Para (a) e (b), que seriam associadas ao rétulo bare
ground, o modelo apresentou o comportamento mencionado de classificar essas imagens
como agriculture, possivelmente por confundi-las com regioes em estagio iniciais de produgao
agricola. J& para (c) e (d), que seriam associadas ao rétulo cultivation, possivelmente
pelo viés do treinamento associado as correla¢oes, interpretou que os rétulos agriculture,
habitation, road estariam presentes nas duas imagens, embora em (c¢) nao sejam visiveis os

elementos road e agriculture e em (d) nao seja visivel o elemento road.

Figura 14 — Exemplos de imagens bare ground e cultivation com classificacao invertida

(a) (b) (c) (d)

Fonte: Goldenberg et al. (2017)

Por fim, em relagao aos rétulos de condigdes atmosféricas, a Tabela 2 permite
avaliar que o maior erro esteve associado a classe haze. Para as imagens com esse rotulo,
as classificagoes erradas ocorreram, principalmente, com o modelo interpretando que elas
pertenceriam a classe clear, como pode ser observado pela Tabela 6. Além disso, avaliou-se
que essas inversoes de classificacao estiveram associadas, no geral, a imagens com pouca

variagdo nos elementos de superficie, sobretudo em casos em que havia somente vegetacao
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priméaria presente. Nesses casos, o modelo apresentou dificuldade em diferenciar que a
tonalidade um pouco mais opaca existente na imagem seria da presenca de neblina, e nao

do préprio elemento de superficie.

Tabela 6 — Classes reais e preditas para imagens com rétulo haze

clear cloudy haze partly cloudy

Real 0 0 233 0
Predito 145 16 333 24

Fonte: O autor (2023)

As imagens da Figura 15 ilustram duas das ocorréncias em que o modelo confundiu
os rotulos haze e clear. Esses dois casos exemplificam o cenario mencionado de imagens
com pouca diversidade nos elementos de superficie, nas quais o modelo nao conseguiu

diferenciar se a opacidade existente seria do préprio elemento ou da presenca de neblina.

Figura 15 — Exemplos de imagens haze classificadas como clear

(a) (b)

Fonte: Goldenberg et al. (2017)

4.3 Resultados dos modelos finais

Concluida a analise de resultados dos modelos iniciais, a seguir, discutem-se como
as melhorias implementadas nos modelos finais aprimoraram a capacidade de classificacao
das imagens. Nesse estagio da pesquisa, a primeira mudanca foi ajustar a configuracao
do parametro learning rate para que ele pudesse ser atualizado ao longo das épocas,
reduzindo seu valor & medida em que os pesos do modelo se aproximassem da configuracao
ideal, visando facilitar a convergéncia da otimizacao. Com mais detalhes, enquanto esse
parametro foi definido como 1073 para todas as épocas dos modelos iniciais; nos modelos
finais, foi ajustado para ser reduzido em 10 vezes sempre que uma época nao apresentasse

ganhos de performance, sendo limitado a um valor de 1077,

Considerando essa mudanca, o resultado pela VGG16 melhorou, mas nao de forma

substancial, passando de 0,891 no melhor modelo inicial para 0,894 na abordagem com
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learning rate variavel. Ja para a ResNet50, a variacao foi mais significativa, com o resultado
avancando de 0,866 para 0,895. Pelas curvas de erro da ResNet na Figura 16, nota-se
que o cenario com learning rate variavel é capaz, na validacao, tanto de atingir um valor
menor de erro do que o cenario com learning rate fixa quanto de, alcancado esse valor,
manter-se mais estavel ao longo das épocas, com uma evolugao da aprendizagem mais
similar nos conjuntos de treino e validacao. Ja no contexto de learning rate fixa, nota-se
um comportamento irregular nas épocas, com a curva de validacao oscilando apés atingir o
valor minimo e, no geral, se afastando da curva de treino, o que sugere a ocorréncia de um

problema de overfitting nesse cenario, evitado na abordagem com learning rate variavel.

Figura 16 — Curvas de aprendizado contendo, ou nao, variagdo no learning rate

(a) Caso com learning rate fixa (b) Caso com learning rate variavel
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Fonte: O autor (2023)

Concluidos os experimentos com a learning rate, a etapa seguinte foi explorar a
aumentacao dos dados de treino, como representado na Figura 17 para os cenarios (a), (b) e
(c). No cendrio (a), testaram-se rotagoes das imagens em multiplos de 90° e espelhamentos
horizontais e verticais. No cendrio (b), além das aumentagoes de (a), testaram-se zooms de
forma aleatéria, focando ou afastando as imagens em um intervalo entre 85% e 115% em
relagdo as imagens originais. Ja no cenario (c), aplicou-se zoom somente por aproximacao,
com um intervalo entre 85% e 100% da imagem original, o que foi realizado para evitar o

surgimento de ruidos nas bordas, efeito que acaba acontecendo no cenario com afastamento.

Pela Figura 15, observa-se que a ResNet50 no cendrio (a) foi o modelo com o
melhor resultado, sendo o primeiro do trabalho a superar o patamar de 0,9 de performance.
E interessante avaliar, também, que a aplicacdo do zoom, nos dois cenérios explorados,
acabou nao contribuindo para um aumento representativo na diversidade dos dados de
treino e os resultados nesses cendrios acabaram sendo inferiores, para a ResNet50, e
similares, para a VGG16, em relagao aqueles do experimento (a). Nota-se, ainda, que, com
a maior complexidade dos dados de treino proporcionada pela aumentacao, comparado

aos experimentos anteriores, em que existia uma proximidade maior de performance entre
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VGG16 e ResNetb0, nesses novos cenarios, a superioridade nos resultados da ResNet50 em
relacao a VGG16 passou a ser mais evidente, o que ocorreu em conjunto com um menor
tempo de treinamento para a ResNet50 em relacao a VGG16. Enquanto cada época da
VGG16 levou cerca de 8 minutos para ser concluida; para a ResNetb0, exigiu cerca de 5
minutos. Em conjunto, a melhor performance e o menor tempo de treinamento motivaram

que a ResNet50 fosse a configuracao selecionada para os experimentos seguintes realizados.

Figura 17 — Resultados dos modelos iniciais para as configuragoes avaliadas
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Por fim, menciona-se que, com a maior diversidade nos dados de treino, a diferenca
de performance nos conjuntos de treino e validacdo se tornou menor para os experimentos
com aumentacao do que nos anteriores. Isso pode ser observado, por exemplo, pela Figura
18, que ilustra a curva de aprendizado para a ResNet50 no cendrio (a). Comparando-a
as curvas de aprendizado apresentadas na Figura 16, nota-se que, para o cenario com
aumentacgao, o distanciamento entre as curvas de treino e validacao é significativamente
menor ao longo das épocas, evidenciando que, nesse cenario, o processo de treinamento se

tornou mais representativo dos resultados a serem medidos no contexto de validacao.
Figura 18 — Curva de aprendizado para a ResNet50 com aumentacao dos dados
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Fonte: O autor (2023)
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Analisados os experimentos com aumentacao de dados, apresentam-se, a seguir, 0s
resultados obtidos pela variagao das dimensoes das imagens. Partindo do melhor modelo
anterior com a ResNet50, as dimensoes foram ampliadas para até 224x224 pizels. Pela
Figura 19, observa-se que as dimensoes relacionaram-se diretamente com a performance
da classificagao. Esse comportamento pode ser justificado pelo inputs fornecidos para o
modelo tornarem-se mais préximos aos pizels das imagens iniciais a medida em que as
dimensoes aumentam, reduzindo a perda de informacao na modelagem. Além disso, com as
maiores dimensoes, a estrutura do modelo tornou-se mais préxima aquela em que os pesos
foram originalmente treinados na ImageNet, contribuindo para que esses pesos fossem

mais compativeis com o contexto da classificacdo desde o inicio do treinamento.

Figura 19 — Resultados da ResNetb0 com a variagao nas dimensoes das imagens
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Por outro lado, embora o modelo com dimensoes 224x224 tenha proporcionado
o melhor resultado, ele exigiu um tempo de treinamento substancialmente maior. Como
apresentado na Figura 20, para esse modelo, cada época demorou cerca de 8 vezes mais

que o cenario 64x64 e, para o treinamento completo, o tempo exigido foi 6,4 vezes maior.

Figura 20 — Tempos de treinamento em funcao das dimensoes dos inputs
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E interessante observar na Figura 20, também, o comportamento do modelo 128x128.
Para ele, foram necessarias 11 épocas até a conclusao do treinamento, enquanto o modelo
inicial 64x64 exigiu 22 épocas. Como consequéncia, embora o tempo de cada época do
cenario 128x128 tenha sido, aproximadamente, 2,8 vezes maior do que o inicial, o tempo
total de treino entre eles variou somente em 0,8 horas. Além disso, a performance desse
modelo foi somente 0,2% pior do que aquela do cendrio 224x224. Considerando esse
contexto, avalia-se que, caso o presente trabalho estivesse associado a uma aplicacao real
em que o processo de treinamento fosse frequente e o tempo de treinamento fosse uma

restricao, a dimensao ideal, embora nao proporcionasse o melhor resultado, seria a 128x128.

Analisados os experimentos anteriores, apresentam-se, a seguir, os resultados do
contexto de modelos segregados para as condigoes atmosféricas e para os elementos de
superficie. Nessa nova abordagem, os modelos foram construidos partindo da configuracao
da ResNet50 com inputs de dimensoes 224x224. Para o modelo de elementos de superficie,
os unicos ajustes foram na quantidade de outputs da camada final de predicao, alterada
para as 13 possiveis classes, e na selecao dos dados de treino/validagao, dos quais foram
removidas as imagens totalmente nubladas. J& para o modelo de condi¢oes atmosféricas,
como mencionado em 3.3, as fungoes de ativacdo na camada de predi¢do e de custo foram
ajustadas para o contexto multi-classe. Por fim, para avaliagdo do cenario combinado no
conjunto de validacdo, realizou-se, inicialmente, a predicao das condi¢oes atmosféricas. Em
seguida, para as imagens nao preditas como totalmente nubladas, realizou-se a classifica¢ao
dos elementos de superficie. Os resultados dos modelos individuais, assim como da predicao

combinada, encontram-se apresentados a seguir, na Figura 21.

Figura 21 — Resultados da abordagem por modelos segregados
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A partir desse grafico, ao avaliar o resultado da predi¢ao combinada, é interessante
observar que, mesmo com modelos especificos para condi¢des atmosféricas e elementos
de superficie, a performance aumentou somente 0,1% em relacao ao melhor cendrio de

predicao de todas as classes de uma vez. Isso evidencia que, mesmo avaliando todas as
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classes, o modelo tnico foi capaz de lidar com cada uma delas de forma independente.
Dado esses resultados, caso os experimentos fossem finalizados nessa etapa, a modelagem
unica seria considerada a melhor, ja que, além de ser mais simples de ser construida por
abrange somente um modelo, apresentaria resultados similares a exploracao de modelos
segregados. Por outro lado, com a construgao de modelos segregados, foi possivel explorar
a variagao do threshold de classificacao dos rétulos de superficie, mantendo o modelo de
condigoes atmosféricas prevendo somente um rétulo por imagem. Como sera apresentado a
seguir, com essa melhoria, o cenario de modelos segregados passou a proporcionar ganhos

representativos de performance, consolidando essa abordagem como a melhor do trabalho.

A Figura 22 ilustra, justamente, a variacao, em funcao do threshold, da performance
da classificagdo dos elementos de superficie para as imagens preditas como nao sendo
totalmente nubladas no modelo de condi¢oes atmosféricas. Por esse gréafico, nota-se que o
melhor valor de threshold correspondeu a 0,26, associado a um Fj préoximo a 0,92 para
os rotulos de superficie nesse conjunto de imagens. Partindo desse cenario e avaliando o
novo resultado das predi¢oes combinadas, a nova performance mensurada foi de 0,918,
representado um ganho de 1% em relacao ao melhor cendrio sem a variagao do threshold e

de 3% em relagao ao melhor modelo avaliado na etapa dos resultados iniciais.

Figura 22 — Resultados variando o threshold de classificagao dos elementos de superficie
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Contribuindo para entender o significado desse ganho de 3%, a Tabela 7 compara,
por roétulo, os resultados dos melhores modelos inicial e final. Por ela, é interessante
avaliar que, mesmo com performances baixas em virtude da pequena representatividade
dos elementos raros de superficie no conjunto de treino, o modelo aprendeu a classificar
parte das ocorréncias desses rotulos, diferentemente do modelo inicial, que sempre previa
esses elementos como ausentes. Nota-se que o tnico rétulo em que esse comportamento
persistiu foi o slash burn. Para essa classe, por aspectos de semelhanca visual e de viés

das ocorréncias conjuntas dos roétulos no treinamento, o modelo continuou confundindo
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as aparicoes do slash burn com se fossem associadas as classes agriculture e cultivation.
J& para o artisinal mine, que o modelo conseguia classificar parcialmente, mas confundia
com os elementos agriculture, habitation e road, a performance melhorou em cerca de 65%,
ganho que pode ser justificado, sobretudo, pela redugao dos casos em que o artisinal mine
era confundido com a classe habitation. Antes, como apresentado na Tabela 3, embora
existissem 2 casos reais do rotulo habitation para as imagens artisinal mine, o modelo previa

36 ocorréncias. Apds as melhorias, essas previsoes foram reduzidas para 10 ocorréncias.

Tabela 7 — Detalhamento do resultado por rétulo para o modelo final

Grupo Roétulo Fjp inicial Fj final Variagao
clear 0,970 0,971 0,001
Condigoes cloudy 0,774 0,833 0,059
atmosféricas haze 0,648 0,645 -0,003
partly cloudy 0,903 0,925 0,022
agriculture 0,852 0,894 0,042
bare ground 0,007 0,311 0,304
Elementos cultivation 0,449 0,648 0,199
de superficie habitation 0,672 0,793 0,121
comuns primary 0,989 0,990 0,001
road 0,793 0,870 0,077
water 0,650 0,804 0,154
artisinal mine 0,469 0,771 0,302
blooming - 0,226 0,226
Flementos blow__down - 0,187 0,187
de superficie conventional mine - 0,485 0,485
raros selective_logging - 0,396 0,396

slash burn - - -

Fonte: O autor (2023)

J& em relagao ao elementos comuns de superficie, os principais ganhos foram nas
classes bare ground e cultivation. Assim como para os modelos iniciais, eles continuaram
sendo os réotulos de maior erro, mas tiveram suas performances aprimoradas significativa-
mente. Para o bare ground, enquanto antes o modelo havia conseguido identificar somente
1 das 175 ocorréncias do rotulo no conjunto de validagao, com o novo modelo, esse niimero
aumentou para 50. Para esse caso, a melhoria foi proporcionada pela redugao no threshold,
diferentemente do que ocorreu com a classe artisinal mine, em que o novo modelo foi capaz
de reduzir as inversoes de rétulo. Assim, nas imagens bare ground, o modelo continuou
interpretando que o elemento agriculture estaria presente, mas com o menor threshold,
foi capaz de classificar, também, o rétulo correto bare ground. Para o rétulo cultivation,
o comportamento foi similar. Antes, como mencionado nos resultados iniciais, o modelo
havia conseguido classificar 42% das ocorréncias do rétulo, confundindo-o com os elementos
agriculture, habitation e road. Apos as melhorias, esse niimero subiu para 69,6%, mas

as classificagoes dos rétulos errados continuaram presente, indicando que a melhoria no
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resultado foi proporcionada, assim como no caso do bare ground, pelo menor threshold.

Para os rétulos de condigoes atmosféricas, observa-se na Tabela 7 que, apesar das
melhorias na modelagem, o rétulo haze continuou sendo aquele com a pior performance.
Para essa classe, persistiu o cenario analisado nos modelos iniciais de que, em imagens com
pouca variagdo nos elementos de superficie, o modelo apresenta dificuldade em diferenciar
a tonalidade um pouco mais opaca presente na imagem como pertencente a neblina, e nao
ao proprio elemento de superficie. J4 como cendrio positivo para esse grupo de rotulos,
avalia-se que os principais ganhos foram nas classes cloudy e partly cloudy, com melhorias
de 7,6% e 2,4%. Para elas, a Tabela 8 apresenta a contagem dos rétulos reais e preditos
nos cendrios inicial e final. Em relagao ao cloudy, nota-se que a melhoria do resultado
foi proporcionada pela correcdo dos casos em que esse rotulo havia sido confundido,
principalmente, com a classe partly cloudy. Ja para o rotulo partly cloudy, as corregoes

foram, sobretudo, nos rétulos que haviam sido interpretados como clear.

Tabela 8 — Comparativo das classificagoes de condi¢Ges atmosféricas

Rotulo Cenario cloudy partly cloudy clear haze
Real 395 0 0 0
cloudy Predito (inicial) 296 37 16 37
Predito (final) 324 25 14 29
Real 0 1440 0 0
partly cloudy Predito (inicial) 5 1297 119 9
Predito (final) 13 1339 65 6

Fonte: O autor (2023)

Concluindo a se¢ao de resultados, a Figura 23 ilustra trés imagens que, classificadas
com inversao de rétulo no modelo inicial, foram interpretadas corretamente no modelo final.
Nesse sentido, (a) ilustra um caso de artisinal mine que, anteriormente, era classificado
como habitation; (b) um caso de cloudy que era classificado como partly cloudy e (c) um

caso de partly cloudy que era classificado como clear.

Figura 23 — Exemplos de imagens com classificagoes corrigidas no modelo final
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Fonte: O autor (2023)
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5 CONCLUSOES

Aplicando distintas técnicas de deep learning, o trabalho apresentado construiu
modelos de visao computacional voltados a classificagao de multiplos rétulos presentes
em imagens de satélite da regido amazonica. Para isso, utilizou como base de dados um
conjunto com cerca de 40 mil imagens disponibilizadas na plataforma Kaggle no ano
de 2017. Consultadas essas imagens, as principais etapas do trabalho foram de analise

exploratéria e de desenvolvimentos dos modelos iniciais e finais.

Na andlise exploratoria, para os rétulos de condigoes atmosféricas, o estudo avaliou
que cada imagem poderia estar associada a somente uma classe, o que motivou a construgao
de um modelo multi-classe especifico para esses rotulos na etapa dos resultados finais.
Ja para os elementos de superficie, foi observado que, embora o cenario com um tnico
réotulo fosse o mais comum, cerca de 48% das imagens apresentavam mais de uma classe,
sendo comuns cendrios com 2, 3 ou 4 rétulos. Nesse grupo de rétulos, notou-se, também,
que existia uma variacao significativa na representatividade entre as classes, com o rétulo
primary sendo 2,3 vezes mais frequente do que a soma de todos os demais desse grupo.
Para os elementos raros, notou-se que, de fato, a presenca desses elementos nas imagens
era esporadica, ocorrendo somente em 3,6% das imagens disponiveis. Como consequéncia,
esse desbalanceamento trouxe desafios que o trabalho procurou superar, mas que acabaram

refletidos na performance dos modelos desenvolvidos.

Nos modelos iniciais, ap6s explorar quatro alternativas de modelagem, o trabalho
concluiu que a melhor abordagem correspondeu ao caso em que VGG16 foi configurada
com uma camada de batch normalization no inicio da rede e foi ajustada para que os pesos
da ImageNet, em todas as camadas, possuissem liberdade de retreino desde a primeira
época. Nessa abordagem, a performance geral pela métrica Fjp foi de 0,891, mas apresentou
variacao significativa entre os rotulos. Em particular, o trabalho observou que, pela baixa
representatividade no conjunto de treino, o modelo foi incapaz de classificar elementos
raros de superficie, prevendo, no geral, a auséncia dos elementos desse grupo. Ja para os
elementos comuns, embora o modelo tenha apresentado performance elevada nos rétulos
agriculture e primary, acabou, por efeitos de similaridade de aspectos visuais e viés do
conjunto de treino, invertendo classificagoes e apresentando performance piores nos rétulos
bare ground e cultivation. Por fim, para as condigoes atmosféricas, o modelo apresentou
performance elevada na identificagao das imagens clear, mas, nos casos com neblina e
pouca variacao de elementos de superficie, apresentou dificuldade em interpretar que a

tonalidade mais opaca da imagem seria da neblina, e ndo do proprio elemento de superficie.

Nos modelos finais, observou-se que a mudanca na configuracdo do parametro

learning rate, permitindo que ele fosse atualizado ao longo das épocas, contribuiu para uma
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melhor convergéncia do processo de otimizacao. Além disso, a aumentagao de dados no
conjunto de treino viabilizou que a performance no treinamento se tornasse mais coerente
aquela da validacdo, o que conferiu maior generalidade ao modelo desenvolvimento. Ja
a variacao nas dimensoes das imagens permitiu que as perdas de informacgao dos inputs
iniciais fossem minimizadas e que os pesos pré-treinados se tornassem mais compativeis
com o cenario avaliado desde o inicio do treinamento. Nesse contexto dos modelos finais, a
ResNet50, que nos modelos iniciais havia proporcionado resultados inferiores & VGG16,
passou a ser o modelo mais adequado para interpretar a maior complexidade dos dados,
apresentando as melhores performances. Por fim, com construcao dos modelos segregados
e a variacao do threshold, conseguiu-se obter uma modelagem que aumentou a capacidade
de identificacao dos elementos de superficie, ao mesmo tempo em que garantiu que, em

cada predicao, fosse classificado somente uma das condi¢oes atmosféricas.

Como consequéncia das melhorias, o modelo conseguiu aumentar a performance na
maioria dos rétulos, reduzindo as ocorréncias de inversoes de classificagao e passando a
identificar casos que nos modelos iniciais nao eram classificados, como nos elementos raros
de superficie. Em contrapartida, mesmo no modelo final, em virtude do efeito da auséncia
de representatividade no conjunto de treinamento, as performances permaneceram baixas
para os rotulos raros e para as classes bare ground, cultivation e haze. Nesse sentido, como
proximos passos a serem explorados para melhorar a performance dessas classes, seria
interessante aumentar a quantidade de imagens rotuladas. Sendo invidvel essa op¢ao, podem
ser exploradas abordagens semi-supervisionadas para agregar a classificagdo conhecimento
a partir das imagens nao rotuladas. Seria interessante, também, explorar estratégias de
curriculum learning, visando gerar um aprendizado dos rotulos de forma gradual, partindo
das classes mais faceis para as mais dificeis, que poderia contribuir para ganhos de
performance adicionais nas classificagbes. Por fim, menciona-se que, além desses préximos
passos que se associam a aspectos de modelagem, seria interessante, também, expandir a
aplicacao do modelo desenvolvido para além do conjunto de dados explorado, avaliando-o,
por exemplo, em imagens extraidas do Google Maps ou de outras fontes, como o INPE ou

a propria companhia Planet, associada as imagens utilizadas como base para o estudo.

Considerando os aspectos apresentados, entende-se que o trabalho atingiu o objetivo
desejado de proporcionar uma classificacado automatica eficiéncia de roétulos de imagens
de satélite da Amazonia, embora os proximos passos mencionados possam tornar os
desenvolvimentos ainda mais robustos para aplicagoes reais de suporte a atuagao de

fotointerpretes especialistas no monitoramento do desmatamento.
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