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RESUMO

Quirino, M. C. Classificação automática de imagens de satélite para
acompanhamento e controle do desmatamento na Amazônia. 2023. 59p.
Monografia (MBA em Inteligência Artificial e Big Data) - Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2023.

Buscando contribuir para atividades de acompanhamento e controle do desmatamento da
Amazônia, o trabalho construiu, aplicando distintas técnicas de deep learning, modelos
de visão computacional voltados à classificação de rótulos de condições atmosféricas e de
elementos de superfície presentes em imagens de satélite. Ao automatizar a classificação,
esse modelo pode tanto ser utilizado para um acompanhamento em tempo real das áreas
com ações antropogênicas, quanto como uma ferramenta de suporte para a atuação do
fotointerprete. Para desenvolver os modelos, o trabalho utilizou um conjunto com cerca de
40 mil imagens disponibilizadas no Kaggle em 2017. Consultadas essas imagens, o estudo
buscou entender as características dos rótulos a serem preditos, avaliando a distribuição das
ocorrências dessas classes e analisando as correlações entre elas. Nessa etapa, verificou-se
que as imagens abrangiam 17 rótulos, divididos em condições atmosféricas e elementos
comuns e raros de superfície. Na modelagem, o estudo evoluiu gradualmente a complexi-
dade dos desenvolvimentos, explorando técnicas de transfer learning, aumentação de dados
e variações nos parâmetros do modelo. Finalizados os desenvolvimentos, a melhor abor-
dagem foi composta combinando 2 modelos, sendo um associado à predição multi-classe
das condições atmosféricas e o outro à predição multirrótulo dos elementos de superfície.
Considerando o cenário combinado, a performance alcançada foi de 0,918 na métrica Fβ,
selecionada para lidar com o desbalanceamento dos rótulos. Avaliando as classes individu-
almente, para as condições atmosféricas, o modelo conseguiu classificar imagens limpas ou
parcialmente nubladas com performances de 0,970 e 0,925, mas apresentou dificuldade
para classificar imagens nubladas (0,645). Para elementos de superfície, influenciado pelo
desbalanceamento das classes no conjunto de treino, o modelo apresentou bons resultados
para rótulos como vegetação primária (0,99), agricultura (0,894) e estrada (0,870), mas teve
dificuldade ao classificar elementos pouco frequentes, como regiões de mineração (0,485),
extração seletiva (0,396) e solo exposto (0,311). Por esses resultados, o trabalho concluiu
que o objetivo proposto de construir uma modelagem capaz de classificar automaticamente
imagens de satélite da Amazônia foi atendido, no entanto avaliou que existem margens de
melhoria, sobretudo nas classes menos presentes nos dados selecionados.

Palavras-chave: Classificação multirrótulo. Classificação multi-classe. Aprendizado pro-
fundo. Visão computacional.





ABSTRACT

Quirino, M. C. Automatic classification of satellite images for monitoring and
controlling deforestation in the Amazon rainforest. 2023. 59p. Monograph (MBA
in Artificial Intelligence and Big Data) - Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos, 2023.

Seeking to contribute to activities related to monitoring and controlling deforestation in the
Amazon rainforest, this monograph constructed computer vision models using various deep
learning techniques, with a focus on classifying multiple labels of atmospheric conditions
and surface elements present in satellite images. By automating the classification, this
work can be applied for real-time monitoring of areas with anthropogenic activities and as
a support tool for photointerpreters’ tasks. The study used a dataset with approximately
40,000 images available on Kaggle in 2017 to develop the models. Upon examining these
images, the work aimed to comprehend the characteristics of their labels by evaluating
the distribution of these classes and analyzing the correlations among them. At this stage,
it was observed that the images encompassed 17 classes, categorized into atmospheric
conditions, common surface elements, and rare surface elements. During the modeling phase,
the study gradually increased the complexity of the developments, exploring techniques
such as transfer learning, data augmentation, and variations in model parameters. After
completing the development tasks, the best approach was composed by combining two
models, with one dedicated to multi-class prediction of atmospheric conditions and the
other to multi-label prediction of surface elements. Considering the combined scenario, the
achieved performance was 0.918 on the F-beta metric, selected to address label imbalance.
When evaluating the classes individually for atmospheric conditions, the model was able
to classify clear or partly cloudy images with performances of 0.970 and 0.925, but it
had difficulty classifying cloudy images (0.645). Regarding surface elements, influenced
by the imbalance of labels in the training set, the model achieved good results for classes
such as primary vegetation (0.99), agriculture (0.894), and road (0.870), but encountered
difficulties when classifying less frequent elements such as conventional mining (0.485),
selective logging (0.396), and bare ground (0.311). Based on these results, the study
concluded that the proposed objective of constructing a model capable of automatically
classifying satellite images of the Amazon rainforest was achieved. However, it also assessed
that there are opportunities for improvement, especially within the less-represented classes
in the selected data.

Keywords: Multi-label classification. Multi-class classification. Deep Learning. Computer
vision.
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1 INTRODUÇÃO

Nesse primeiro capítulo, apresentam-se a motivação e os objetivos do estudo e
descreve-se a estrutura do trabalho a ser explorada nas seções seguintes.

1.1 Motivação

O desmatamento da Amazônia, entendido como a supressão de áreas de vegetação
primária por ações antropogênicas, que já se encontrava em patamares críticos, está
avançando de forma acelerada nos últimos anos, o que intensifica a relevância de soluções que
contribuam para um controle eficiente e estratégico da região. Segundo dados do Programa
de Monitoramento da Floresta Amazônica Brasileira por Satélite (PRODES), desenvolvido
pelo Instituto de Pesquisas Espaciais (INPE), as taxas anuais de desmatamento da floresta,
avaliadas em torno de 7 mil km2 até 2018, estão superiores a 10 mil km2 desde 2019 e
atingiram um pico de 13 mil km2 no ano de 2021, o que seria equivalente a 8,5 vezes o
município de São Paulo. No total, a região desmatada já ultrapassou 830 mil km2, valor
superior a 3,4 vezes a área do estado de São Paulo e que corresponde a 17% da Amazônia
Legal, que, por sua vez, abrange 59% do território brasileiro (INPE, 2023).

As causas desse avanço do desmatamento são diversas e complexas, podendo-se
destacar a expansão agropecuária, a realização de obras de mineração, estradas e barragens,
e a impunidade a crimes ambientais. Além desses aspectos, que contribuem para uma
modificação intensa da cobertura vegetal em um curto intervalo de tempo, naquele que é
classificado como desmatamento por corte raso, a Amazônia também é ameaçada pelo
processo de degradação progressiva, em que ocorre uma gradativa perda da qualidade
original da floresta, causada por fatores como exploração madeireira, caças, queimadas e
eventos climáticos. Como consequência, a combinação desses cenários de desmatamento
provoca efeitos como perda de biodiversidade em larga escala, tanto da fauna quanto da
flora local, desequilíbrio ambiental, danos à segurança alimentar da população e, também,
intensificação de mudanças climáticas e de eventos climáticos extremos (INPE, 2022).

Diante desse contexto de expansão nos níveis de desmatamento e dada a criticidade
dos impactos atrelados, nota-se a relevância de soluções, como o PRODES e o Sistema
de Detecção de Desmatamento em Tempo Real (DETER), também desenvolvido pelo
INPE, que contribuam para o monitoramento eficiente dos locais ameaçados. No caso
do PRODES, programa iniciado em 1988, o principal objetivo é estimar a taxa anual de
desmatamento da floresta primária na Amazônia Legal Brasileira. Para isso, por meio da
fotointerpretação por especialistas de imagens de satélite com resolução espacial entre 20
e 30 metros, o projeto realiza o mapeamento anual dos incrementos do desmatamento,
classificando-os em grupos de desmatamento por corte raso ou por degradação progressiva
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da vegetação. Já o DETER, por meio de alertas gerados diariamente, possui como principal
objetivo informar rapidamente os órgãos de fiscalização sobre novas alterações na cobertura
florestal. Com esses alertas, que também são disponibilizados para consulta pública no
portal TerraBrasilis, os órgãos de fiscalização conseguem, de forma ágil, planejar suas
ações e atuar no controle da região (INPE, 2022).

Até 2015, o DETER utilizava imagens geradas por sensores com resolução espacial de
250 metros, que permitia gerar avisos para alterações da cobertura vegetal com área mínima
de 25 hectares, mas não possibilitava a classificação das imagens em rótulos mais detalhados.
A partir de 2015, a metodologia do DETER foi aprimorada e passou a utilizar imagens
com resolução espacial entre 56 e 64 metros, o que viabilizou reduzir a área mínima para 3
hectares e permitou um maior detalhamento dos alertas, que passaram a ser classificados
nos casos de desmatamento com solo exposto ou com vegetação, mineração, degradação,
cicatriz de incêndio florestal e cortes seletivos de exploração madeireira (desordenado
ou geométrico). Para executar essas classificações, a metodologia utilizada pelo DETER
baseia-se na fotointerpretação das imagens a partir dos elementos de tonalidade, cor, forma,
textura e contexto. Os fotointérpretes avaliam, também, os resultados do Modelo Linear
de Mistura Espectral (MLME), que é responsável por estimar as frações de solo, vegetação
e sombra presentes em cada imagem (INPE, 2022).

Além dos métodos adotado pelo DETER e pelo PRODES, robustos pelo conhe-
cimento especialista do fotointérprete, outra abordagem aplicável para a classificação
das imagens da Amazônia consiste no uso de técnicas de Deep Learning, por meio do
treinamento de Convolutional Neural Networks (CNNs). Nesse caso, os modelos treinados
em imagens de satélite previamente rotuladas podem ser utilizados para classificar novas
imagens coletadas. Essa alternativa, por automatizar a classificação, pode ser utilizada
tanto para um acompanhamento em tempo real das áreas com ações antropogênicas, quanto
como uma informação adicional para auxiliar e aprimorar a atuação do fotointerprete. No
presente trabalho, essa foi a abordagem implementada. Em particular, o estudo procurou
desenvolver e comparar modelos de CNNs que, dadas imagens de satélite da Amazônia,
fossem capazes de avaliá-las automaticamente com um elevado nível de assertividade,
classificando tanto as condições atmosféricas quanto os diferentes elementos da superfície
terrestre presentes nelas, sejam naturais ou resultantes de ações antropogênicas.
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1.2 Objetivo

Dado o contexto apresentado no tópico anterior, o trabalho possui como objetivo
geral desenvolver um modelo que, fornecida uma imagem de satélite da região amazônica,
realize classificações multirrótulos dessa imagem.

Em termos específicos, esse objetivo pode ser detalhado nas seguintes questões:

• Qual é a condição atmosférica existente em uma imagem selecionada (totalmente
nublado, parcialmente nublado, céu limpo, neblina)?

• Quais são os elementos naturais (florestas primárias, rios, lagos) e resultantes de
ações antropogênicas (estradas, regiões de cultivo, habitação, mineração, garimpo,
queimadas) existentes em uma imagem selecionada?

• Como a aplicação de distintas técnicas de Deep Learning, como o uso de redes
pré-treinadas e a realização de aumentação nos dados, podem contribuir para a
melhoria nos resultados das classificações?

1.3 Estrutura do trabalho

Em relação à estrutura do trabalho, após o atual capítulo de introdução, apresenta-
se a fundamentação teórica, na qual são explorados os aspectos conceituais dos métodos
de Visão Computacional utilizados no estudo. Na sequência, o terceiro capítulo delimita
o escopo do problema avaliado e descreve a metodologia a ser implementada para a
abordagem desse problema. O quarto capítulo, por sua vez, detalha os principais resultados
obtidos. Por fim, o quinto capítulo apresenta as conclusões do trabalho, assim como discute
oportunidades de melhorias e de novos desenvolvimentos que podem ser explorados em
projetos futuros.
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2 FUNDAMENTAÇÃO TEÓRICA

Para a seção de fundamentos teóricos, o primeiro tópico contempla uma breve
contextualização da área de Visão Computacional, utilizando como referência, sobretudo, os
estudos de Szeliski (2022) e Davies (2017). Após isso, utilizando como referência os livros de
Goodfellow, Bengio e Courville (2016), Chollet (2021) e Géron (2022), os próximos tópicos
detalham conceitos gerais das abordagens de deep learning e, em seguida, aprofundam nas
explicações de elementos das convolutional neural networks (CNNs) e das arquiteturas de
CNNs utilizadas durante as etapas de modelagem do estudo.

2.1 Contextualização da área de Visão Computacional

Como descrito por Szeliski (2022) e por Davies (2017), a Visão Computacional é
um campo da Ciência da Computação direcionado ao desenvolvimento de ferramentas
computacionais que sejam capazes de analisar, interpretar e extrair automaticamente
informações do mundo a partir de imagens ou sequências de imagens. Contemplando
aplicações diversas, as soluções de Visão Computacional estão sendo aplicadas, dentre
outros problemas, para tarefas de classificação e segmentação de imagem, detecção de
objetos, análises e predições de movimentos e reconstrução tridimensional de objetos a
partir de múltiplas imagens (FORSYTH; PONCE, 2011; DAVIES, 2017).

Os primeiros estudos em visão computacional ocorreram no início da década de
70, estimulados pelo interesse do período nas áreas inteligência artificial e robótica. Nessa
época, o que diferenciou a visão computacional do campo já existente de processamento
digital de imagens foi o desejo de recuperar estruturas 3D de objetos a partir de feições
2D analisadas. Na década de 80, a atenção passou a ser direcionada, sobretudo, para
o avanço em técnicas matemáticas mais sofisticadas e focadas na análise quantitativa
das imagens. Já nos anos 90, alguns temas que começaram a adquirir relevância foram
análise de movimentação de objetos, segmentação de imagens, reconhecimento de faces e
computação gráfica. Nos anos 2000, dentre os temas que ganharam destaque, mencionam-
se os algoritmos de reconhecimento de imagens baseados em features, os modelos de
combinação de imagens para criação de texturas e os modelos de geração de superfícies
tridimensionais mais realista. Nesse período, como consequência da maior disponibilidade
de bases rotuladas na internet, houve, ainda, o início do crescimento na aplicação de
técnicas de machine learning em problemas de visão computacional (SZELISKI, 2022).

Já a partir de 2010, houve uma intensificação profunda dos avanços na área de visão
computacional, com os algoritmos sendo aprimorados tanto em termos de performance
quando de robustez e confiabilidade, o que permitiu que eles passassem a ser utilizados de
forma ampla em soluções comerciais. Durante esse período, os elementos que contribuíram
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para o avanço foram diversos e potencializaram-se de maneira conjunta. Um primeiro fator
consistiu na disponibilização de bases de dados anotados de larga escala, como a ImageNet.
Conjuntamente a isso, houve um intenso aumento no poder computacional, viabilizado
pela aplicação paralelizada dos algoritmos de aprendizado nas unidades de processamento
gráfico (GPUs). Combinados, o acesso a dados em larga escala e a disponibilidade de
recursos computacionais para processar esses dados permitiram que modelos robustos de
deep learning fossem construídos e continuamente aprimorados (CHOLLET, 2021).

Como consequência, esses métodos de modelagem, que serão detalhados no tópico
seguinte, potencializaram a transformação das soluções tanto nas tarefas de reconhecimento
de imagens, que é o escopo do presente trabalho, quanto nas outras aplicações de visão
computacional, e passaram a ser utilizados de forma geral nos desenvolvimentos da
área. Além disso, viabilizaram que plataformas completas e complexas, envolvendo, por
exemplo, veículos autônomos, realidades aumentadas e mapeamento e localização de
objetos tridimensionais em tempo real pudessem ser implementadas (SZELISKI, 2022).

2.2 Deep Learning

Conceitualmente, deep learning consiste em uma subárea de machine learning, com
abas contemplando o processo de aprendizado, no qual o modelo é treinado para, a partir
dos inputs fornecidos, determinar a melhor representação dos dados capaz de gerar os
outputs desejados (CHOLLET, 2021). Por outro lado, o que particulariza as abordagens
de deep learning é que, para elas, esse aprendizado é determinado pela sobreposição
de múltiplas camadas de representação. Com essas sobreposições, cada nova camada
torna-se capaz de computar conceitos progressivamente mais complexos, combinados das
representações mais simples geradas nas camadas anteriores (GOODFELLOW; BENGIO;
COURVILLE, 2016). Exemplificando esse conceito para tarefas de reconhecimento de
imagens, a partir dos pixels fornecidos como inputs iniciais, os modelos de deep learning são
capazes, por exemplo, de gerar representações de linhas e bordas, que, em seguida, podem
ser combinadas em contornos, formas e assim sucessivamente, até que o entendimento final
da imagem seja alcançado.

Em deep learning, o aprendizado dessa estrutura hierárquica de representação
de dados é viabilizado pelas neural networks. Como descrito por Chollet (2021), elas
consistem em modelos construídos pela sobreposição de camadas de funções matemáticas,
com cada uma dessas camadas sendo responsável por aplicar a transformação de dados que
resultará na representação de dados associada. Nesse processo, os pesos de cada camada
parametrizam a transformação a ser aplicada, e o aprendizado do modelo consiste na
busca da melhor configuração desses pesos, de tal forma que os outputs finais sejam, o
mínimo possível, divergentes dos targets desejados. Para mensurar essa divergência entre
predições e valores reais, os modelos de deep learning se baseiam no cálculo de uma função
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de custo, selecionada conforme a natureza do problema modelado. E, por meio do processo
de backpropagation, essa função de custo é utilizada como feedback para o ajuste dos pesos
das camadas, que, progressivamente, são corrigidos para minimizar o erro associado.

Partindo do contexto anterior, os próximos tópicos aprofundam em conceitos de
deep learning relevantes para o desenvolvimento do trabalho. Inicialmente, apresentam-
se as feedforward neural networks, abordagem base para os modelos de deep learning,
com fundamentos válidos para diversas implementações, dentre as quais as CNNs. Em
seguida, aprofunda-se na explicação do processo de treinamento dos modelos, introduzindo
alguns dos algoritmos de otimização aplicados, detalhando o método de backpropagation e
descrevendo algumas das funções de ativação e de custo usualmente utilizadas.

2.2.1 Feedforward neural networks

Assim como descrito de uma forma mais ampla para os modelos de deep learning,
as feedforward neural networks são geradas pela sobreposição de camadas de funções mate-
máticas, compondo uma função final f que aprende o melhor conjunto de pesos W para se
aproximar da função f ∗, que associa um determinado input x a um output y (GOODFEL-
LOW; BENGIO; COURVILLE, 2016). Para um cenário com três camadas, por exemplo,
esse comportamento pode ser representado pela expressão f(x) = f (3)(f (2)(f (1)(x))), em
que f (1) corresponde à primeira camada, f (2) à segunda e assim sucessivamente.

Cada camada, além disso, pode ser composta por múltiplas unidades, que atuam
de forma paralela e determinam os outputs dessa camada. Para isso, em cada unidade, os
inputs recebidos são somados linearmente, sendo ponderados pelos seus respectivos pesos, o
que pode ser representada por z = w1x1 +w2x2 + · · ·+wnxn +b = wT x+b, sendo w o vetor
de pesos, x o vetor de inputs e b o termo bias da soma. Ao resultado dessa combinação,
aplica-se uma função de ativação não linear, que é responsável por gerar o output da
unidade, como representado por hw(x) = ϕ(wT x + b), em que ϕ corresponde à função
de ativação aplicada (GÉRON, 2022). É possível, ainda, expandir essa expressão para
abranger todas as unidades da camada, como representado por hW,b(X) = ϕ(XW + b),
em que W, X, b e hW,b correspondem, respectivamente, às matrizes de pesos e inputs,
e aos vetores de bias e outputs da camada. Definido esse vetor hW,b(X) para a camada,
ele pode, em seguida, ser enviado como input para a próxima, repetindo, em cadeia, o
processo descrito até que os outputs finais sejam obtidos.

Para as feedforward neural networks, esse fluxo é sempre executado, até a predição,
com as camadas sendo percorridas de forma acíclica e direcionada. Justamente por conta
disso, receberam a nomenclatura feedforward. Esse comportamento é diferente, por exemplo,
das recurrent neural networks, que passam a contemplar conexões de feedback, nas quais
os outputs de uma camada podem ser retroalimentados como inputs dessa própria camada
para as predições seguintes (GOODFELLOW; BENGIO; COURVILLE, 2016).
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2.2.2 Algoritmos de otimização

Para que o processo de aprendizado seja alcançado, um dos componentes chave
em deep learning consiste no algoritmo de otimização implementado, que torna possível
atualizar os pesos do modelo de forma iterativa, minimizando a função de custo associada.
De uma forma geral, os principais algoritmos utilizados possuem o método gradient descent
como base, tendo sido aprimorados a partir dele para tornar a otimização mais rápida e
eficiente (GÉRON, 2022).

Para o entendimento desse método, pode-se considerar, inicialmente, uma função
y = f(x). Dada essa função, sua derivada f ′(x) permite determinar como pequenas
alterações de tamanho ϵ no input geram a correspondente variação no output, o que pode
ser representado por f(x+ϵ) ≈ f(x)+ϵf ′(x). Partindo desse cenário, como apresentado por
Goodfellow, Bengio e Courville (2016), o método gradient descent consiste na minimização
de f(x) pelo deslocamento de x, em pequenos passos, na direção oposta à derivada, sendo
que, no cenário com múltiplos atributos, esse método é aplicado pela movimentação na
direção oposta ao gradiente associado. Nesse caso, representado por ∇xf(x), o gradiente
é o vetor composto pelas derivadas parciais ∂

∂xi
f(x), em que cada uma delas mensura o

quanto f é alterada quando cada um dos atributos xi são variados em x. Considerando
esses conceitos, o método gradient descent pode ser representado por x′ = x − ϵ∇xf(x),
sendo x′ os novos valores dos inputs após a execução do passo de tamanho ϵ, usualmente
denominado learning rate.

Aplicado aos modelos de deep learning, o método anterior é utilizada para otimizar
os pesos W minimizando a função de custo L(W), avaliada para cada um dos m registros
do conjunto de treinamento. Nesse cenário, a atualização dos pesos é representada por:

W′ = W − ϵ
1
m

m∑
i=1

∇WL(W; x(i)) (2.1)

A necessidade de computar a função de custo para todos os registros de treinamento
torna a abordagem anterior lenta, principalmente quando volume de dados é grande.
Aprimorando esse processo, a variação stochastic gradient descent (SGD) seleciona, em
cada atualização dos pesos, uma amostra aleatória B, de tamanho m′, do conjunto de
treinamento, sendo a amostra B e o hiperparâmetro m′ denominados, respectivamente,
minibatch e batch size. Para o SGD, a expressão (2.1) passa a ser representada por
(GOODFELLOW; BENGIO; COURVILLE, 2016):

W′ = W − ϵ
1

m′

m′∑
i=1

∇WL(W; x(i)) (2.2)

Além do SGD, o método Adam, nome derivado de adaptive moment estimation, é
aplicado, também, de forma recorrente para a otimização dos pesos dos modelos. Além
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de contemplar os benefícios do SGD, o método Adam é capaz de proporcionar uma
adaptação individualizada do learning rate para cada um dos pesos, o que contribui para
uma convergência mais rápida durante o treinamento e evita oscilações indesejadas em
regiões próximas ao mínimo. Para isso, calcula iterativamente dois atributos, denominados
momentos de primeira e de segunda ordem, que determinam a média e a variância dos
gradientes e são avaliados por meio de médias móveis com taxas de decaimento exponencial
(GÉRON, 2022).

2.2.3 Backpropagation

Aplicado de forma integrada ao algoritmo de otimização, o método backpropagation
permite que, em cada passo durante o treinamento, sejam calculados os gradientes da
função de custo em relação a cada peso do modelo. A partir disso, esses gradientes podem
ser utilizados pelo algoritmo de otimização para realizar a atualização dos pesos, seguindo a
abordagem descrita no tópico anterior (GOODFELLOW; BENGIO; COURVILLE, 2016).

A primeira etapa no método backpropagation, denominada forward pass, consiste em
seguir o fluxo de informação descrito para as feedforward neural networks em 2.2.1, partindo
dos inputs e percorrendo as camadas intermediárias até a obtenção dos outputs da camada
de predição. Ao final dessa etapa, calcula-se o erro geral da rede pela função de custo
definida para o modelo. Em seguida, inicia-se o próximo estágio, denominado backward
pass. Nele, aplicando o conceito de regra da cadeia definido em Cálculo, determina-se,
inicialmente, o quanto cada conexão da camada final contribuiu para o erro de cada output
gerado. Finalizado esse estágio, o processo apresentado é repetido retroativamente para as
conexões das camadas anteriores, até as conexões com os inputs iniciais (GÉRON, 2022).

Com essa abordagem, consegue-se propagar o gradiente de erro para cada peso e
termo bias do modelo, permitindo que, com esses gradientes conhecidos, seja aplicado o
passo de otimização descrito em 2.2.2. Durante o treinamento, a execução desses passos,
contemplando as etapas de backpropagation, aplicação do algoritmo de otimização e
atualização dos pesos do modelo é realizada para cada um dos minibatchs. Após todos
os minibatchs terem sido avaliados, diz-se que uma época foi concluída. Pode-se, a partir
disso, repetir o processo por tantas épocas quanto forem necessárias, até que a métrica de
avaliação do modelo alcance seu estágio ideal.

2.2.4 Funções de ativação

Como descrito para as feedforward neural networks, as funções de ativação são
aplicadas em cada unidade das camadas de transformação dos dados, gerando o output da
unidade, representado por hw(x) = ϕ(wT x + b). Além disso, sobretudo para as camadas
intermediárias, são não lineares, o que viabiliza que o modelo consiga se aproximar de uma
função f ∗, mesmo que ela apresente comportamento complexo e não linear. Caso contrário,
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esse modelo estaria restrito à representação de funções lineares, ainda que contemplasse
múltiplas camadas (GOODFELLOW; BENGIO; COURVILLE, 2016).

Para as unidades das camadas intermediárias, a rectified linear unit (ReLU),
expressa por ReLU(z) = max{0,z}, consiste em uma das funções de ativação de uso mais
frequente. Além de preservar a capacidade de aprendizado para problemas não lineares,
em virtude da aplicação de uma transformação não linear nos inputs, a ReLU apresenta
comportamentos similares às funções lineares, o que torna o cálculo dos gradientes mais
simples e rápido. Além disso, não apresenta um limite superior para sua saída, o que
contribui para que os gradientes se mantenham consistentes. Em contrapartida, quando o
resultado da ativação se torna nulo, por exemplo pelo recebimento de inputs negativos,
a unidade associada tornam-se incapaz de contribuir para o aprendizado do modelo
(GOODFELLOW; BENGIO; COURVILLE, 2016).

Para contornar essa limitação, foram desenvolvidas variações da ReLU, como as
abordagens leak ReLU e PReLU, que podem ser representadas por max{αz, z}. Essas
abordagens permitem que um output não nulo seja gerado quando z é negativo, o que
viabiliza que a unidade se mantenha ativa e continue contribuindo para o processo de
aprendizado. Ao mesmo tempo, controlam esse output para que ele não seja excessivamente
negativo, o que poderia impactar a convergência do gradiente. Enquanto para a leak
ReLU α é um hiperparâmetro definido para o modelo; para a PReLU, torna-se um novo
parâmetro do próprio modelo, aprendido ao longo do treinamento (GÉRON, 2022).

Além das abordagens anteriores, outras funções de ativação aplicáveis para as
camadas intermediárias são a logística e a tangente hiperbólica, embora tenham se tornado
menos frequentes após a difusão da ReLU e suas variantes. Também denominada sigmoid,
a função logística é expressa por σ(z) = 1/(1 + exp(−z)), apresentando intervalo definido
entre 0 e 1. A função tangente hiperbólica, por sua vez, pode ser descrita como tanh(z) =
2σ(2z)−1, possuindo intervalo entre -1 e 1. Embora sejam contínuas e diferenciáveis, o que
seria positivo para o treinamento, essas funções acabam saturando tanto para os valores
positivos quanto negativos de z, o que torna o aprendizado baseado em gradientes mais
difícil de ser alcançado (GÉRON, 2022). Por conta desse comportamento, passaram a ser
menos aplicadas diretamente como ativação nas camadas intermediárias em feedforward
neural networks. Para outras abordagens de deep learning, como as recurrent neural
networks, há outros requisitos e implementações que tornam o uso dessas funções de
ativação mais adequado.

Para as unidades das camadas de outputs finais do modelo, a escolha da função de
ativação está atrelada ao tipo de problema explorado. Em particular no presente trabalho,
as abordagens de interesse são as classificações multi-classes ou multirrótulos de imagens.
Em cenários de classificações multi-classes, em que a predição estará associada a somente
uma das classes possíveis, aplica-se, usualmente, a função de ativação softmax. Para isso,
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sendo h os outputs gerados pela última camada oculta, é realizada, inicialmente, uma
camada de predições lineares, que pode ser representada por z = WT h + b, em que W
e b correspondem, respectivamente, à matriz de pesos e ao vetor de termos bias dessa
camada. Cada um dos zi outputs estão associados a probabilidade de cada classe i, mas
não estão normalizados entre 0 e 1. Para realizar essa normalização, aplica-se a softmax,
como representado pela expressão (GOODFELLOW; BENGIO; COURVILLE, 2016):

softmax(z)i = exp(zi)∑
j exp(zj)

(2.3)

Para cada classe i, essa função de ativação gerará como predição a probabilidade
dessa classe quando comparada às demais, de tal forma que a soma dessas probabilidades,
considerando todas as j classes, será 1.

Já nos casos de classificações multirrótulos, em que a predição pode estar associada
a mais de uma classe ao mesmo tempo, aplica-se, usualmente, a sigmoide. Assim como
na abordagem anterior, é realizada, inicialmente, uma camada de predições lineares, que
pode ser representada por z = WT h + b. Após isso, aplica-se a sigmoide para cada
um dos zi outputs, como representado por σ(zi) = 1/(1 + exp(−zi)). Assim, cada um
desses outputs retornará um valor entre 0 e 1, representando a probabilidade da predição
ser associada a cada classe i (GOODFELLOW; BENGIO; COURVILLE, 2016). Essa
abordagem contempla, também, os casos de classificação binária. Para eles, haverá somente
um output z e a probabilidade σ(z) estimada será da classe positiva, podendo-se calcular
1 − σ(z) para encontrar a probabilidade da classe negativa (GÉRON, 2022).

2.2.5 Funções de custo

Como descrito para os métodos de otimização em 2.2.2, a função de custo, represen-
tada por L(W), proporciona a medida de comparação entre os outputs gerados e os targets
esperados, definindo o valor a ser minimizado em cada passo de atualização dos pesos
do modelo. Nos problemas envolvendo classificações de imagens, as principais funções de
custo aplicadas são adaptações do conceito de cross-entropy, dentre as quais a categorical
cross-entropy para classificações multi-classes e a binary cross-entropy para as classificações
binárias e multirrótulos. Originada do campo da Teoria da Informação, a cross-entropy é
expressa por H(p, q) = −∑

x p(x) log q(x) e mensura o quanto uma distribuição estimada
de probabilidades q(x) é similar à distribuição de probabilidades real dos targets p(x),
penalizando os casos que possuem um valor elevado para p(x), mas não apresentaram uma
estimativa associada elevada para q(x) (GÉRON, 2022).

Aplicando esse conceito para um input i que pode ser classificado entre K classes,
sendo p̂(i) e y(i) os vetores com as probabilidades estimadas e as classificações reais de
cada classe k, a cross-entropy desse input pode ser representada por:
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H(y(i), p̂(i)) = −
K∑

k=1
yk

(i) log p̂k
(i) (2.4)

Nos problemas multi-classe, em que as classes são mutuamente exclusivas, y(i) será
um vetor one-hot, com valor 1 para a classe válida e 0 para as demais. Nesse caso, sendo
k a classe válida, a expressão 2.4 pode ser simplificada para H(y(i), p̂(i)) = − log p̂k

(i),
abordagem denominada, também, de categorical cross-entropy. Já nos problemas de
classificação binária, pode-se tanto manter a aplicação da expressão 2.4, quando as classes
positiva e negativa estiverem representadas em um vetor one-hot, quanto ajustar a expressão
para H(y(i), p̂(i)) = −[y(i) log p̂(i) + (1 − y(i)) log(1 − p̂(i))], abordagem denominada binary
cross-entropy. Por fim, nos problemas multirrótulos, pode-se tanto manter a expressão
2.4, sendo y(i), nesse caso, um vetor composto por 1 em cada classe válida e 0 nas demais
posições, quanto avaliar cada classe individualmente por meio da binary cross-entropy,
somando, em seguida, os resultados obtidos (GÉRON, 2022).

É possível, também, generalizar a expressão 2.4 para todas as m′ instâncias do
minibatch, o que permite obter a seguinte função de custo, dados os W pesos do modelo:

L(W) = −
m′∑
i=1

K∑
k=1

yk
(i) log p̂k

(i) (2.5)

Como descrito nas seções anteriores, essa função de custo pode ser integrada ao
processo de backpropagation para determinar o gradiente relacionado a cada um dos pesos,
habilitando a aplicação dos algoritmos de otimização e a atualização desses pesos ao longo
do processo de treinamento.

2.3 Convolutional Neural Networks

Como descrito por Goodfellow, Bengio e Courville (2016), as CNNs são definidas
como neural networks que aplicam a operação de convolução nas suas camadas, sendo
especializadas para processar dados que, como imagens, possuem estrutura topológica
em grid. Enquanto nas neural networks com camadas totalmente conectadas os padrões
são aprendidos globalmente a partir dos inputs, com os outputs de cada camada sendo
associados a todos os inputs da camada anterior, pelas camadas de convolução, viabiliza-se
o aprendizado de padrões locais. Para isso, elas apresentam um comportamento similar ao
da Figura 1, apresentada na página seguinte. Por meio de um filtro, denominado kernel,
que possui, por exemplo, altura fh e largura fw, percorre-se a camada de input, aplicando
esse filtro ao longo dessa camada de tal forma que cada output gerado seja o produto
dos pesos do kernel pelos inputs da região em que ele está sendo aplicado. Realizado esse
processo, denomina-se como feature map a camada formada pelo conjunto de outputs da
aplicação do kernel.
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Figura 1 – Exemplo do processo de convolução

Fonte: Goodfellow, Bengio e Courville (2016)

Na figura anterior, foi exemplificado um cenário em que os inputs iniciais eram
formados a partir de uma camada bidimensional. Em imagens, no entanto, é comum que
esses inputs sejam tridimensionais, associados, por exemplo, às cores do sistema RGB.
Nesse caso, a diferença é que, inicialmente, o kernel é aplicado individualmente a cada uma
das camadas de cores, denominadas channels. Em seguida, os resultados correspondentes
são somados para gerar um único valor na camada de outputs, assim como ocorreria
no cenário bidimensional (GÉRON, 2022). De forma similar, é comum que a camada
de convolução seja formadas por múltiplos filtros. Nesse contexto, cada filtro aplicará o
mesmo processo descrito anteriormente e gerará os respectivos outputs, de tal forma que,
após a aplicação de todos os filtros, essa camada de convolução resultará em uma camada
tridimensional, com a profundidade correspondendo à quantidade de filtros aplicados. Em
seguida, essa camada de outputs pode ser enviada como input para uma nova camada
convolucional, com o processo ocorrendo de forma análoga à anterior, com os novos inputs
sendo tratados da mesma forma como descrito para os channels (GÉRON, 2022).



30

Para as camadas de convolução, dois conceitos adicionais relevantes são denominados
stride e padding. O stride é um parâmetro que define qual será o deslocamento realizado
pelo kernel à medida em que percorre os inputs. Na Figura 1, por exemplo, é possível
avaliar que os deslocamentos foram de uma unidade. Menciona-se que, não necessariamente,
os deslocamentos horizontal e vertical precisam receber o mesmo valor. É possível, por
exemplo, que o stride horizontal seja de duas unidades, enquanto o vertical de somente
uma. Já o padding é um parâmetro que controla os efeitos de borda, permitindo definir se
os outputs apresentarão, ou não, as mesmas dimensões dos inputs recebidos (CHOLLET,
2021). Partindo da Figura 1, nota-se um caso com padding ausente. Nela, os cálculos foram
restritos à região de inputs. Como consequência, as dimensões foram reduzidas de 3x4 nos
inputs para 2x3 nos outputs. Caso o parâmetro padding fosse aplicado, seria como se as
bordas dos inputs fossem preenchidas com valores nulos, viabilizando a aplicação do kernel
nessas regiões, de tal forma que as dimensões do output seriam, também, 3x4.

Além das convoluções, um segundo tipo de camada usualmente presente nas CNNs
são as poolings. Embora continuem extraindo características locais por meio de janelas
que percorrem os inputs, elas fazem isso pela cálculo de uma função de agregação nessa
região avaliada, retornando como output, por exemplo, o valor máximo (max pooling) ou
médio (average pooling) da região. Com essas camadas, torna-se possível diminuir o custo
computacional do modelo e a quantidade de parâmetros analisados (GÉRON, 2022).

Pela Figura 2, associada à VGG16, é possível observar um exemplo de arquitetura
contemplando as camadas mencionadas.

Figura 2 – Arquitetura - VGG16

Fonte: Chollet (2021)

Nela, nota-se uma configuração modular e hierárquica. Partindo dos inputs, a rede
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é formada por blocos de duas ou três camadas convolucionais e uma camada de max
pooling que se sucedem. Observa-se, também, que esses blocos se distribuem formando
uma estrutura similar a uma pirâmide, com o número de filtros aumentando à medida em
que a profundidade das camadas se torna maior, ao mesmo tempo em que os tamanhos dos
feature maps diminuem. Concluída essa sequência de blocos com camadas convolucionais
e poolings, é definido o topo da rede, que é composto por duas camadas totalmente
conectadas e pela camada final de predição. Apresentada para a VGG16, esse padrão
de blocos de camadas que se organizam em uma estrutura similar a uma pirâmide é
uma configuração típica para CNNs. Com esse padrão, à medida em que o tamanho dos
features maps diminui e a profundidade das camadas aumenta, é ampliada de capacidade
da rede em combinar as features das camadas precedentes e gerar níveis mais avançados
de abstração (CHOLLET, 2021).

Embora o aumento da profundidade proporcione capacidade de abstração para a
rede, à medida em que ela se torna mais profunda, amplia-se, também, o ruído presente
nas camadas. Como consequência, quando esse ruído se torna excessivo, a rede perde
capacidade de atualização correta dos gradientes e o processo de backpropagation deixa
de funcionar. Para corrigir essa limitação, os modelos da família ResNet introduziram os
blocos residuais. Esses blocos consistem em estruturas que armazenam os valores dos inputs
recebidos e, após a aplicação das camadas associadas, adicionam, pelas conexões residuais,
os inputs anteriormente armazenados aos outputs gerados, enviando o resultado dessa
adição como input para as camadas seguintes. Nessa abordagem, as conexões residuais
contribuem como um atalho de informação, evitando o impacto de blocos que poderiam
gerar ruídos excessivos e, com isso, permitindo que a atualização dos gradientes possa
acontecer adequadamente (CHOLLET, 2021). Nas etapas de modelagem do trabalho, as
conexões residuais foram exploradas por meio da ResNet50, configuração que aplica os
conceitos mencionados e contempla 50 camadas de convolução.

Além das abordagens anteriores, duas estratégias adicionais de modelagem, cujos as-
pectos conceituais são apresentados a seguir, são exploradas no trabalho visando contribuir
para ganhos de performance nas classificações. A primeira delas corresponde à inclusão,
ao longo da rede, de camadas de batch normalization, que conseguem proporcionar uma
normalização adaptativa do conjunto de dados. Para que isso seja possível, durante o
treinamento, essa camada realiza a normalização de seus inputs considerando os dados
do batch vigente na etapa sendo treinada. Já na avaliação, a normalização é feita pela
média móvel exponencial dos batches avaliados no treinamento. Além de tornar os inputs
mais similares entre si, o que contribui para a capacidade de generalização do modelo, as
camadas de batch normalization, assim como as conexões residuais, facilitam a propagação
dos gradientes ao longo da rede, permitindo, também, que configurações mais profundas
possam ser construídas (CHOLLET, 2021). Justamente por conta disso, é comum que essa
camada componha as arquiteturas mais robustas. Isso ocorre, por exemplo, na ResNet50,
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que combina conexões residuais e batch normalization em cada bloco.

Por fim, a segunda estratégia adicional explorada correspondeu à inclusão de etapas
de dropout anteriormente à camada de predição. Como apresentado por Géron (2022),
essa abordagem consiste em uma técnica de regularização na qual, em cada etapa do
treinamento, as unidades de uma camada apresentam probabilidade p de não estarem
ativas e de não contribuírem para os outputs gerados. Como consequência dessa abordagem,
o que se nota é que ela aprimora a capacidade de aprendizado da camada de uma forma
geral. Isso ocorre pois, como em algum momento qualquer uma das unidades pode estar
desativada, o modelo não pode depender de unidades específicas, o que contribuiu para
que todas passem a apresentar uma relevância mais equilibrada na camada, auxiliando o
modelo a se tornar mais generalizável.

Concluída a descrição dos fundamentos teóricos, aborda-se, no tópico seguinte, a
metodologia do estudo, detalhando as atividades realizadas ao longo do trabalho.
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3 METODOLOGIA

O diagrama a seguir ilustra a sequência de atividades realizadas no trabalho, que
são descritas com maiores detalhes nos próximos tópicos.

Figura 3 – Sequência de atividades

Identificação do
tema de interesse

Seleção do
conjunto de dados

Análise
exploratória

Delimitação dos
objetivos
do estudo

Construção dos
modelos iniciais

Análise dos
resultados

Mapeamento
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Fonte: O autor (2023)

3.1 Caracterização do problema

Compondo a primeira etapa do estudo, a caracterização do problema abrangeu
as atividades necessárias para direcionar e delimitar o escopo dos desenvolvimentos. Foi
nesse momento em que se selecionou como ponto de partida para o trabalho o desafio
Planet: Understanding the Amazon from Space, proposto na plataforma Kaggle em 2017
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(GOLDENBERG et al., 2017). Os dados desse desafio contemplam 81.148 imagens da Bacia
Amazônica, coletadas entre janeiro de 2016 e fevereiro de 2017 por meio dos satélites Flock
2 da companhia Planet, sendo que 40.479 delas estão rotuladas e foram utilizadas para
treinamento e a validação dos modelos. Individualmente, cada imagem possui dimensões de
256x256 pixels, cobrindo áreas de 89,72 hectares. No geral, a área abrangida pelo conjunto
de todas as imagens é de 19.877,88 hectares (GOLDENBERG et al., 2017).

Definido o conjunto de dados, a etapa seguinte do estudo consistiu em realizar a
análise exploratória, que, como apresentado na seção de resultados, permitiu entender
a distribuição dos rótulos e as características das imagens avaliadas. Foi a partir dessa
análise que se definiram os objetivos específicos do trabalho, como detalhado na seção 1.2.
Após isso, iniciaram-se as etapas de modelagem, seguindo as estratégias descritas a seguir.

3.2 Modelagens iniciais

Para as versões iniciais de modelagem, as imagens do conjunto de treinamento foram
carregadas em memória de uma única vez. Para que isso fosse possível com os recursos
computacionais disponíveis (processador 12th Gen Intel® Core™ i5-12500H, 16GB de
RAM), foi necessário reduzir as dimensões durante o carregamento, transformando-as dos
256x256 pixels iniciais para 64x64. Após isso, as imagens foram normalizadas, tendo seus
pixels convertidos para valores entre 0 e 1. Concluindo o pré-processamento, realizou-se a
segregação dessas imagens nos conjuntos de treino e validação, optando-se por distribuí-las
de forma aleatória, selecionando 80% dos dados para treino e 20% para validação.

Realizados os pré-processamentos anteriores, seguiu-se com a construção dos mode-
los, que foram configurados para predizerem todos rótulos das imagens de uma única vez.
As alternativas de modelagem exploradas foram as seguintes:

• (1) Extração de features pela VGG16, predição por um classificador kNN;

• (2) Transfer learning pela VGG16;

• (3) Transfer learning pela ResNet50;

• (4) CNN com camadas definida por experimentação, sem transfer learning.

Menciona-se que, por ser um problema de classificação multirrótulo, a construção
dos modelos seguiu os direcionamentos das seções 2.2.4 e 2.2.5, aplicando a sigmoide como
função de ativação na camada de outputs e a binary crossentropy como função de custo.
Além disso, utilizou-se a Fβ score como métrica de avaliação. Recomendada nas orientações
da competição, trata-se de uma medida que pondera precisão e revocação e permite
controlar a influência do desbalanceamento das classes. Sendo a precisão representada por
p e a revocação representada por r, a Fβ pode ser calculada como:
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Fβ = (1 + β2) ·
(

p · r

(β2 · p) + r

)
(3.1)

Todas as abordagens contemplaram, também, o processo de early stopping para
controlar o overfitting dos modelos. Nas aplicações de transfer learning, além disso, foram
testadas as inclusões de camadas de batch normalization e dropout. Os desempenhos de
cada abordagem encontram-se detalhados em 4.2.

3.3 Modelagens finais

Após analisar os resultados iniciais, a etapa seguinte do estudo consistiu em mapear
e implementar melhorias no pré-processamento dos dados e na configuração dos modelos.

Em relação ao pré-processamento, a primeira melhoria consistiu em modificar o
modo de carregamento das imagens para ser realizado por meio de batches. Essa modificação
permitiu que o consumo de memória no treinamento fosse otimizado e que as dimensões das
imagens fossem aumentadas. Realizaram-se, nesses sentido, comparações dos modelos entre
diferentes dimensões, variando-as desde 64x64 até 224x224. Em seguida, implementou-se
a aumentação de dados para o conjunto de treinamento, variando o zoom das imagens,
realizando flips horizontais e verticais e rotacionando-as para valores múltiplos de 90 graus.

Em relação às melhorias na configuração dos modelos, testou-se, inicialmente,
ajustar o parâmetro learning rate para que ele fosse reduzido ao longo do treinamento,
conforme as épocas não contribuíssem com melhorias na métrica de avaliação. Após isso,
testou-se explorar dois modelos independentes, sendo um responsável por predizer as
condições atmosféricas e o outro os elementos da superfície. Menciona-se que, como o
modelo para a predição das condições atmosféricas passou a estar associado a um problema
multi-classe, com rótulos mutuamente exclusivos, as funções de ativação da camada final e
a função de custo foram ajustadas para a softmax e a categorical cross-entropy. Por fim,
para o modelo dos elementos de superfície, testou-se variar o threshold de classificação das
imagens entre cada um dos rótulos, que inicialmente estava definido em 0,5.

Considerando os experimentos descritos, os desempenhos proporcionados por cada
abordagem encontram-se detalhados em 4.3.
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4 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS

Para detalhar os resultados do trabalho, inicialmente apresentam-se aspectos
identificados na análise exploratória que contribuíram para direcionar o desenvolvimento
dos modelos. Após isso, discutem-se os resultados obtidos com as modelagens, construídas
seguindo as estratégias descritas nas seções 3.2 e 3.3.

4.1 Análise exploratória

O objetivo inicial com a análise exploratória foi entender a distribuição dos rótulos
das imagens. Como listado abaixo, foram encontradas 17 classes, divididas em três grupos:

• Condições atmosféricas: clear, partly cloudy, cloudy e haze.

• Elementos comuns de superfície: primary, agriculture, water, habitation, road, culti-
vation e bare ground.

• Elementos raros de superfície: slash burn, selective logging, blooming, conventional
mine, artisinal mine e blow down.

Para os rótulos de condições atmosféricas, a contagem de ocorrências de cada classe
no conjunto de treinamento pode ser avaliada no gráfico apresentado abaixo.

Figura 4 – Ocorrências dos rótulos de condições atmosféricas
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Fonte: O autor (2023)
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Por esse gráfico, nota-se que mais de 70% das imagens estão associadas ao rótulo
clear, não apresentando nuvens ou neblinas. Avalia-se, ainda, que as imagens totalmente
nubladas são as menos frequentes, ocorrendo em 5% dos casos. Para elas, os rótulos
de superfície não são classificáveis. Isso pode ser observado, por exemplo, na imagem
cloudy da Figura 5. Além disso, como pode ser avaliado também pela Figura 5, para as
condições atmosféricas, cada imagem pode estar associada a somente uma das classes. Foi,
justamente, com a validação desse comportamento que a construção de modelos segregados
para condições atmosféricas e elementos de superfície foi mapeada como uma estratégia
adequada para ser explorada no trabalho, como será detalhado em 4.3.

Figura 5 – Exemplos de imagens para rótulos de condições atmosféricas

clear partly_cloudy haze cloudy

Fonte: Goldenberg et al. (2017)

Já para os elementos de superfície, as distribuições dos rótulos nos cenários de
elementos comuns e raros podem ser observadas nos gráficos da Figura 6.

Figura 6 – Distribuição dos rótulos para os elementos de superfície
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(b) Elementos raros

98

100

209

332

339

340

0 100 200 300

blow_down

conventional_mine

slash_burn

blooming

artisinal_mine

selective_logging

Contagem

Fonte: O autor (2023)

Um primeiro aspecto observável pelo gráfico de elementos comuns é que o total
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de classificações, somado em 74.309, é superior à quantidade de imagens do conjunto de
treinamento, composto por 40.479 imagens. Isso evidencia que, diferentemente do ocorrido
com as condições atmosféricas, uma mesma imagem pode abranger múltiplos rótulos de
superfície. Pode-se avaliar, ainda, que o rótulo de vegetação primária é o mais comum,
ocorrendo em 93% das imagens. Comparado à soma de todos os demais desse grupo, esse
rótulo é cerca de 2,3 vezes mais presente. Isso sugere ser frequente na base de treinamento a
ocorrência de imagens similares à partly cloudy da Figura 5, que possui somente vegetação
primária como elemento de superfície. Esse desbalanceamento entre as classes justifica,
inclusive, a escolha da Fβ como métrica de avaliação, já que, com ela, consegue-se mensurar
de forma equilibrada o resultado geral, sem que ele seja excessivamente influenciado pela
classe mais frequente.

Já pelo gráfico de elementos raros, nota-se que, de fato, os rótulos desse grupo estão
significativamente menos presentes nas imagens de treinamento do que os rótulos comuns.
O rótulo selective logging, por exemplo, que é o rótulo raro de maior frequência e está
associado à atividade de remoção de árvores selecionadas da vegetação primária, é cerca de
2,5 vezes menos frequente do que o rótulo bare ground, que é o de menor ocorrência para os
elementos comuns e se associa ao cenário de desmatamento completo, com presença de solo
exposto. Ao comparar a soma dos rótulos raros com a soma dos rótulos comuns, nota-se
que, mesmo sem considerar a classe de vegetação primária, os rótulos raros estão 25 vezes
menos presentes no conjunto de treinamento. Como consequência, como será apresentado
nos resultados dos modelos, esses rótulos são os mais difíceis de serem preditos.

A Figura 7, por sua vez, ilustra a distribuição da quantidade de rótulos de superfície
por imagem para os casos em que a condição atmosférica não é totalmente nublada.

Figura 7 – Histogramas da quantidade de rótulos por imagem
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Pode-se avaliar, nesses histogramas, que, para os elementos raros de superfície,
somente 3,6% das imagens possuem algum rótulo e 0,06% apresentam mais de 1. Já para os
elementos comuns, nota-se que somente 3 imagens não apresentam rótulos e que, embora o
cenário com uma única classe seja o mais recorrente, cerca de 48% das imagens apresentam
mais de uma classe, sendo frequentes cenários de 2, 3 ou 4 rótulos.

Já a figura seguinte ilustra a matriz de correlação entre os elementos de superfície,
permitindo avaliar quais rótulos tendem a ocorrer de forma conjunta ou oposta entre si.

Figura 8 – Matriz de correlação entre os elementos de superfície
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Nessa matriz, nota-se que as maiores correlações são entre agriculture e road, com
valor 0,48, e entre habitation e road, com valor 0,44. É interessante avaliar, também,
que esses rótulos apresentam correlações altas com a classe cultivation, como pode ser
verificado, em especial, para o rótulo agriculture, para o qual a correlação é de 0,34. Os
valores elevados de correlação para esse conjunto de classes é coerente, já que, combinadas,
elas descrevem contextos de ocupação humana nos locais das imagens analisadas. A
matriz permite avaliar, também, que o menor valor de correlação, de −0,08, ocorre entre
primary e bare ground, cenário que pode ser explicado pelo rótulo bare ground representar,
como mencionado anteriormente, situações em que a vegetação primária é completamente
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retirada, resultando em solo exposto. Para os elementos raros de superfície, duas correlações
mostram-se particularmente interessantes. A primeira delas, com valor 0,11, é entre slash
burn e cultivation, podendo ser explicada pelas atividades de corte e queimada, mesmo que
ilegalmente, serem muitas vezes aplicadas próximas às regiões de cultivo para que a região
de produção possa ser expandida. A segunda correlação que se destaca, com valor 0,17, é
aquela entre artisinal mine e water, que pode ser explicada pelo termo artisinal mine estar
associado às atividades de garimpo, que tendem a ocorrer próximas aos leitos d’água.

Por fim, os exemplos de imagens apresentadas seguintes permitem visualizar alguns
dos cenários descritos nas análises das correlações.

Figura 9 – Exemplos de imagens para rótulos de superfície
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Fonte: Goldenberg et al. (2017)

Nesse sentido, nas imagens (b) e (c), podem ser observadas regiões de agricultura,
cultivo, habitação e estrada. Na imagem (d), é possível avaliar um exemplo de solo exposto,
próximo a uma região de vegetação com degradação progressiva. Já nas imagens (a) e
(e), podem ser visualizadas ocorrências de queimadas próximas às regiões de vegetação
primária e cultivo. Por fim, na imagem (f), é possível avaliar uma região de garimpo.
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4.2 Resultados dos modelos iniciais

Apresentada a análise exploratória, detalham-se, a seguir, os resultados dos modelos
iniciais. Nessa etapa, como mencionado em 3.2, as imagens de treinamento foram carregadas
em memória de uma vez, reduzidas dos 256x256 pixels iniciais para 64x64. Do total de
40.479 imagens, selecionaram-se, aleatoriamente, 32.383 para compor o conjunto de treino
e 8.096 o de validação. As estratégias de modelagem foram:

• (1) Extração de features pela VGG16, predição por um classificador kNN;

• (2) Transfer learning pela VGG16;

• (3) Transfer learning pela ResNet50;

• (4) CNN com camadas definida por experimentação, sem transfer learning.

Nas abordagens (1) a (3), utilizaram-se os pesos da ImageNet para iniciar o treino
dos modelos. Além disso, para (1), as features foram extraídas da camada block5_pool
da VGG16, a última antes do topo da rede. Já para (2) e (3), nos primeiros modelos,
congelaram-se as camadas anteriores ao último bloco, realizando o treinamento nesse bloco
e no topo, que, nas duas abordagens, foi formado pelas seguintes camadas: global average
pooling, densa com 512 unidades (ativação relu) e densa com 17 unidades (camada final de
predição). Para o modelo (5), foi construída a arquitetura representada na Tabela 1.

Tabela 1 – Arquitetura da CNN definida por experimentação

layer shape
conv2d (None, 64, 64, 32)
conv2d (None, 64, 64, 32)

max_pooling2d (None, 32, 32, 32)
conv2d (None, 32, 32, 64)
conv2d (None, 32, 32, 64)

max_pooling2d (None, 16, 16, 64)
global_average_pooling2d (None, 64)

dense (None, 128)
dense (None, 17)

Fonte: O autor (2023)

No gráfico 10, ilustram-se os resultados das abordagens (1) a (4) nesse cenário inicial.
Nessa figura, nota-se que a CNN definida por experimentação apresentou o melhor resultado
no conjunto de validação, seguida da VGG16, com 1,2% de diferença na performance entre
elas. Um aspecto interessante, também, foi a diferença na quantidade de épocas necessárias
para que o melhor resultado fosse alcançado nessas abordagens. Enquanto para a VGG16
o aproveitamento dos pesos pré-treinados da rede permitiu que a melhor métrica fosse
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alcançada após somente 5 épocas; para a CNN experimental, foram necessárias 31 épocas.
Como consequência, embora cada época da VGG16 fosse cerca de 4 vezes mais demorada
do que a da CNN experimental, ao avaliar o cenário geral, a VGG16 exigiu um tempo
total de treinamento 58% menor do que aquele da CNN experimental.

Figura 10 – Resultados dos modelos para o cenário 1 das modelagens iniciais
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Fonte: O autor (2023)

Pela Figura 10 é possível avaliar, ainda, que a ResNet50 foi a abordagem de pior
resultado nesse cenário inicial. Esse comportamento pode ser justificado por ela ser uma
rede de maior complexidade e pelo uso dos seus parâmetros pré-treinados ser diretamente
influenciado pelas dimensões iniciais da imagem. Nesse sentido, como nesse cenário foi
necessário reduzir substancialmente as dimensões, isso impactou diretamente a performance
dessa arquitetura e contribuiu para que outras modelagens mais simples, em especial a
abordagem (4), apresentassem resultados superiores. Complementando essa análise, os
gráficos seguintes apresentam as curvas de aprendizado das abordagens (3) e (4).

Figura 11 – Curvas de aprendizado dos modelos
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(b) Abordagem 3 - ResNet50
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Por meio deles, pode-se notar que enquanto as curvas de treino e validação progridem
de forma conjunta para a CNN experimental, reduzindo gradualmente os erros do modelo;
para a ResNet, os resultados na validação são piores do que os de treino em todas as
épocas, existindo um descolamento entre as curvas que se expande ao longo do treinamento.
Observa-se, ainda, que o resultado no conjunto de validação é irregular, como uma oscilação
significativa na performance entre as épocas. Em conjunto, esses aspectos reforçam o
entendimento de que o uso de transfer learning pela ResNet50 não foi uma abordagem
adequada para classificar as imagens nesse primeiro cenário, caracterizado pela redução
das dimensões dos inputs e pelo congelamento dos parâmetros anteriores ao último bloco.

A Figura 12, por sua vez, apresenta os resultados da aplicação da VGG16 e da
ResNet50 para três novas configurações. No cenário (a), os pesos da ImageNet continuaram
sendo utilizados no início do treinamento, mas descongelaram-se todos os blocos da
rede, permitindo que todos os parâmetros fossem atualizados desde a primeira época. Na
configuração (b), incluiu-se à modificação do cenário (a) uma camada de batch normalization
para a leitura dos inputs. Por fim, além das mudanças da configuração (b), o cenário (c)
adicionou no topo da rede, antes da predição, uma camada de dropout com valor 0,15.

Figura 12 – Resultados dos modelos iniciais para as configurações avaliadas
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Por esses gráficos, avalia-se, inicialmente, que o resultado da ResNet50 melhorou de
forma relevante já no cenário (a), avançando em 20% em relação à Figura 10. Menciona-se,
também, que esse ganho de performance está em linha com as discussões apresentadas
sobre o problema de compatibilidade desse modelo à redução nas dimensões das imagens, já
que, com a modificação do cenário (a), os parâmetros dos blocos mais próximos aos inputs
iniciais tiveram liberdade para serem retreinados, ajustando-se às imagens fornecidas. A
inclusão das camadas de batch normalization e dropout contribuíram, também, para ganhos
de performance no uso da ResNet. No entanto, como se observa na Figura 10, esses ganhos
foram menos representativos do que o proporcionado pelo descongelamento dos blocos.

Já para a VGG16, observa-se que a configuração (b) foi capaz de proporcionar
os melhores resultados, com um ganho de 2,8% em relação à Figura 10. Essa maior
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performance, em contrapartida, exigiu um tempo total treinamento aproximadamente
4 vezes maior. De maneira mais detalhada, enquanto no contexto da Figura 10 foram
necessárias 8 épocas, com cerca de 4 minutos cada, para completar o treinamento; para a
configuração (b), foram necessárias 15 épocas de, aproximadamente, 8 minutos. Menciona-
se, também, que esse aumento no tempo esteve associado, sobretudo, ao descongelamento
dos blocos, já que esse comportamento ocorreu de forma similar no cenário (a), para o qual
também foram necessárias 15 épocas de 8 minutos durante o treinamento. É interessante
avaliar, ainda, que o modelo composto pela VGG16 na configuração (b) foi aquele com
o melhor resultado geral no contexto dos modelos iniciais, proporcionando um ganho de
1,5% na performance em relação ao resultado da CNN experimental. Na Tabela 2, são
detalhados os resultados desse melhor modelo para cada rótulo.

Tabela 2 – Detalhamento do resultado por rótulo

Grupo Rótulo Casos (treino) Casos (validação) Fβ

Condições
atmosféricas

clear 22.703 5.728 0,970
cloudy 1.694 395 0,774
haze 2.164 533 0,648

partly_cloudy 5.821 1.440 0,903

Elementos
de superfície

comuns

agriculture 9.874 2.441 0,852
bare_ground 687 175 0,007
cultivation 3.613 864 0,449
habitation 2.917 743 0,672
primary 30.006 7.507 0,989

road 6.503 1.568 0,793
water 5.952 1.459 0,650

Elementos
de superfície

raros

artisinal_mine 269 70 0,469
blooming 268 64 -

blow_down 73 25 -
conventional_mine 78 22 -
selective_logging 279 61 -

slash_burn 162 47 -
Fonte: O autor (2023)

Nela, observa-se, inicialmente, que os elementos raros de superfície possuem valores
ausentes de Fβ. Isso indica que, pela baixa ocorrência desses rótulos no treino, com exceção
da classe artisinal mine, o modelo não aprendeu a identificar os rótulos desse grupo. E,
mesmo para a classe artisinal mine, a performance foi baixa, como se nota pelo valor 0,469
de Fβ apresentado na tabela. Aprofundando na análise dos erros dessa classe, a Tabela 3
detalha a contagem dos rótulos reais e preditos para as imagens que possuíam o elemento
artisinal mine. Por ela, avalia-se que o modelo identificou cerca de 43% das ocorrências desse
rótulo. Observa-se, além disso, que os valores preditos das classes agriculture, habitation e
road são maiores do que os reais. Isso indica que, influenciado pelo desbalanceamento das
classes e por aspectos de similaridade visual, nas situações em que o modelo não identificou
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o rótulo artisinal mine, ele interpretou a presença desse elemento como se fosse associada
a essas outras três classes, mais frequentes no conjunto de treino.

Tabela 3 – Classes reais e preditas para imagens com rótulo artisinal mine

artisinal mine agriculture habitation road
Real 70 11 2 21

Predito 30 20 36 43

Fonte: O autor (2023)

Nas imagens da Figura 13, é possível avaliar três desses casos de inversão da
classificação do rótulo artisinal mine. Nas imagem (a), o modelo confundiu a região de
garimpo com os elementos agriculture, road e habitation. Já nas imagens (b) e (c), as
inversões ocorreram com os elementos road e habitation.

Figura 13 – Exemplos de imagens artisinal mine com classificação invertida
(a) (b) (c)

Fonte: Goldenberg et al. (2017)

Quanto aos elementos comuns de superfície, na Tabela 2, observa-se que os rótulos
bare ground e cultivation foram os mais difíceis de serem preditos. Para eles, assim como
realizado com o artisinal mine na análise dos erros, avaliaram-se as contagens reais e
preditas para as imagens em que essas classes estavam presentes. Em relação ao bare
ground, nota-se, na Tabela 4, que o modelo conseguiu identificar apenas 1 das ocorrências
do rótulo, confundindo-o, principalmente, com a classe agriculture. Esse comportamento
pode ser justificado pelo desbalanceamento entre essas classes no treino e pela existência
de aspectos de similaridade visual, que ocorrem, sobretudo, quando a presença de solo
exposto não é tão intensa e se assemelha a regiões em estágios iniciais de produção agrícola.

Tabela 4 – Classes reais e preditas para imagens com rótulo bare ground

bare ground agriculture habitation primary road
Real 175 45 35 142 57

Predito 1 141 53 172 77

Fonte: O autor (2023)



47

Já para o elemento cultivation, verifica-se, pela Tabela 5, que o modelo encontrou
cerca de 42% das ocorrências do rótulo e que os cenários de classificação errada aconteceram
com o modelo confundindo esse elemento com agriculture, habitation e road. Para esses erros,
além de aspectos de similaridade visual, o que pode ter contribuído são, como discutido na
análise exploratória, as maiores correlações existentes entre o rótulo cultivation e as classes
agriculture, habitation e road. Como mencionado, nas imagens que descrevem regiões de
ocupação humana, é comum que esses rótulos ocorram de forma conjunta. Isso pode ter
gerado um viés no conjunto de treino, provocando o maior erro na etapa de validação.

Tabela 5 – Classes reais e preditas para imagens com rótulo cultivation

cultivation agriculture habitation road
Real 864 656 182 238

Predito 364 720 237 293

Fonte: O autor (2023)

Na Figura 14, ilustram-se imagens em que o modelo não foi capaz de identificar os
elementos bare ground e cultivation. Para (a) e (b), que seriam associadas ao rótulo bare
ground, o modelo apresentou o comportamento mencionado de classificar essas imagens
como agriculture, possivelmente por confundi-las com regiões em estágio iniciais de produção
agrícola. Já para (c) e (d), que seriam associadas ao rótulo cultivation, possivelmente
pelo viés do treinamento associado às correlações, interpretou que os rótulos agriculture,
habitation, road estariam presentes nas duas imagens, embora em (c) não sejam visíveis os
elementos road e agriculture e em (d) não seja visível o elemento road.

Figura 14 – Exemplos de imagens bare ground e cultivation com classificação invertida

(a) (b) (c) (d)

Fonte: Goldenberg et al. (2017)

Por fim, em relação aos rótulos de condições atmosféricas, a Tabela 2 permite
avaliar que o maior erro esteve associado à classe haze. Para as imagens com esse rótulo,
as classificações erradas ocorreram, principalmente, com o modelo interpretando que elas
pertenceriam à classe clear, como pode ser observado pela Tabela 6. Além disso, avaliou-se
que essas inversões de classificação estiveram associadas, no geral, a imagens com pouca
variação nos elementos de superfície, sobretudo em casos em que havia somente vegetação
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primária presente. Nesses casos, o modelo apresentou dificuldade em diferenciar que a
tonalidade um pouco mais opaca existente na imagem seria da presença de neblina, e não
do próprio elemento de superfície.

Tabela 6 – Classes reais e preditas para imagens com rótulo haze

clear cloudy haze partly cloudy
Real 0 0 533 0

Predito 145 16 333 24

Fonte: O autor (2023)

As imagens da Figura 15 ilustram duas das ocorrências em que o modelo confundiu
os rótulos haze e clear. Esses dois casos exemplificam o cenário mencionado de imagens
com pouca diversidade nos elementos de superfície, nas quais o modelo não conseguiu
diferenciar se a opacidade existente seria do próprio elemento ou da presença de neblina.

Figura 15 – Exemplos de imagens haze classificadas como clear
(a) (b)

Fonte: Goldenberg et al. (2017)

4.3 Resultados dos modelos finais

Concluída a análise de resultados dos modelos iniciais, a seguir, discutem-se como
as melhorias implementadas nos modelos finais aprimoraram a capacidade de classificação
das imagens. Nesse estágio da pesquisa, a primeira mudança foi ajustar a configuração
do parâmetro learning rate para que ele pudesse ser atualizado ao longo das épocas,
reduzindo seu valor à medida em que os pesos do modelo se aproximassem da configuração
ideal, visando facilitar a convergência da otimização. Com mais detalhes, enquanto esse
parâmetro foi definido como 10−3 para todas as épocas dos modelos iniciais; nos modelos
finais, foi ajustado para ser reduzido em 10 vezes sempre que uma época não apresentasse
ganhos de performance, sendo limitado a um valor de 10−7.

Considerando essa mudança, o resultado pela VGG16 melhorou, mas não de forma
substancial, passando de 0,891 no melhor modelo inicial para 0,894 na abordagem com
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learning rate variável. Já para a ResNet50, a variação foi mais significativa, com o resultado
avançando de 0,866 para 0,895. Pelas curvas de erro da ResNet na Figura 16, nota-se
que o cenário com learning rate variável é capaz, na validação, tanto de atingir um valor
menor de erro do que o cenário com learning rate fixa quanto de, alcançado esse valor,
manter-se mais estável ao longo das épocas, com uma evolução da aprendizagem mais
similar nos conjuntos de treino e validação. Já no contexto de learning rate fixa, nota-se
um comportamento irregular nas épocas, com a curva de validação oscilando após atingir o
valor mínimo e, no geral, se afastando da curva de treino, o que sugere a ocorrência de um
problema de overfitting nesse cenário, evitado na abordagem com learning rate variável.

Figura 16 – Curvas de aprendizado contendo, ou não, variação no learning rate

(a) Caso com learning rate fixa
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(b) Caso com learning rate variável
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Fonte: O autor (2023)

Concluídos os experimentos com a learning rate, a etapa seguinte foi explorar a
aumentação dos dados de treino, como representado na Figura 17 para os cenários (a), (b) e
(c). No cenário (a), testaram-se rotações das imagens em múltiplos de 90º e espelhamentos
horizontais e verticais. No cenário (b), além das aumentações de (a), testaram-se zooms de
forma aleatória, focando ou afastando as imagens em um intervalo entre 85% e 115% em
relação às imagens originais. Já no cenário (c), aplicou-se zoom somente por aproximação,
com um intervalo entre 85% e 100% da imagem original, o que foi realizado para evitar o
surgimento de ruídos nas bordas, efeito que acaba acontecendo no cenário com afastamento.

Pela Figura 15, observa-se que a ResNet50 no cenário (a) foi o modelo com o
melhor resultado, sendo o primeiro do trabalho a superar o patamar de 0,9 de performance.
É interessante avaliar, também, que a aplicação do zoom, nos dois cenários explorados,
acabou não contribuindo para um aumento representativo na diversidade dos dados de
treino e os resultados nesses cenários acabaram sendo inferiores, para a ResNet50, e
similares, para a VGG16, em relação àqueles do experimento (a). Nota-se, ainda, que, com
a maior complexidade dos dados de treino proporcionada pela aumentação, comparado
aos experimentos anteriores, em que existia uma proximidade maior de performance entre
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VGG16 e ResNet50, nesses novos cenários, a superioridade nos resultados da ResNet50 em
relação à VGG16 passou a ser mais evidente, o que ocorreu em conjunto com um menor
tempo de treinamento para a ResNet50 em relação à VGG16. Enquanto cada época da
VGG16 levou cerca de 8 minutos para ser concluída; para a ResNet50, exigiu cerca de 5
minutos. Em conjunto, a melhor performance e o menor tempo de treinamento motivaram
que a ResNet50 fosse a configuração selecionada para os experimentos seguintes realizados.

Figura 17 – Resultados dos modelos iniciais para as configurações avaliadas
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Fonte: O autor (2023)

Por fim, menciona-se que, com a maior diversidade nos dados de treino, a diferença
de performance nos conjuntos de treino e validação se tornou menor para os experimentos
com aumentação do que nos anteriores. Isso pode ser observado, por exemplo, pela Figura
18, que ilustra a curva de aprendizado para a ResNet50 no cenário (a). Comparando-a
às curvas de aprendizado apresentadas na Figura 16, nota-se que, para o cenário com
aumentação, o distanciamento entre as curvas de treino e validação é significativamente
menor ao longo das épocas, evidenciando que, nesse cenário, o processo de treinamento se
tornou mais representativo dos resultados a serem medidos no contexto de validação.

Figura 18 – Curva de aprendizado para a ResNet50 com aumentação dos dados

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

0.1

0.2

0.3

0.4

0.5

0.6

Treino
Validação

Época

Lo
ss

 (b
in

ar
y 

cr
os

s-
en

tro
py

)

Fonte: O autor (2023)
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Analisados os experimentos com aumentação de dados, apresentam-se, a seguir, os
resultados obtidos pela variação das dimensões das imagens. Partindo do melhor modelo
anterior com a ResNet50, as dimensões foram ampliadas para até 224x224 pixels. Pela
Figura 19, observa-se que as dimensões relacionaram-se diretamente com a performance
da classificação. Esse comportamento pode ser justificado pelo inputs fornecidos para o
modelo tornarem-se mais próximos aos pixels das imagens iniciais à medida em que as
dimensões aumentam, reduzindo a perda de informação na modelagem. Além disso, com as
maiores dimensões, a estrutura do modelo tornou-se mais próxima àquela em que os pesos
foram originalmente treinados na ImageNet, contribuindo para que esses pesos fossem
mais compatíveis com o contexto da classificação desde o início do treinamento.

Figura 19 – Resultados da ResNet50 com a variação nas dimensões das imagens
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Fonte: O autor (2023)

Por outro lado, embora o modelo com dimensões 224x224 tenha proporcionado
o melhor resultado, ele exigiu um tempo de treinamento substancialmente maior. Como
apresentado na Figura 20, para esse modelo, cada época demorou cerca de 8 vezes mais
que o cenário 64x64 e, para o treinamento completo, o tempo exigido foi 6,4 vezes maior.

Figura 20 – Tempos de treinamento em função das dimensões dos inputs
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É interessante observar na Figura 20, também, o comportamento do modelo 128x128.
Para ele, foram necessárias 11 épocas até a conclusão do treinamento, enquanto o modelo
inicial 64x64 exigiu 22 épocas. Como consequência, embora o tempo de cada época do
cenário 128x128 tenha sido, aproximadamente, 2,8 vezes maior do que o inicial, o tempo
total de treino entre eles variou somente em 0,8 horas. Além disso, a performance desse
modelo foi somente 0,2% pior do que aquela do cenário 224x224. Considerando esse
contexto, avalia-se que, caso o presente trabalho estivesse associado a uma aplicação real
em que o processo de treinamento fosse frequente e o tempo de treinamento fosse uma
restrição, a dimensão ideal, embora não proporcionasse o melhor resultado, seria a 128x128.

Analisados os experimentos anteriores, apresentam-se, a seguir, os resultados do
contexto de modelos segregados para as condições atmosféricas e para os elementos de
superfície. Nessa nova abordagem, os modelos foram construídos partindo da configuração
da ResNet50 com inputs de dimensões 224x224. Para o modelo de elementos de superfície,
os únicos ajustes foram na quantidade de outputs da camada final de predição, alterada
para as 13 possíveis classes, e na seleção dos dados de treino/validação, dos quais foram
removidas as imagens totalmente nubladas. Já para o modelo de condições atmosféricas,
como mencionado em 3.3, as funções de ativação na camada de predição e de custo foram
ajustadas para o contexto multi-classe. Por fim, para avaliação do cenário combinado no
conjunto de validação, realizou-se, inicialmente, a predição das condições atmosféricas. Em
seguida, para as imagens não preditas como totalmente nubladas, realizou-se a classificação
dos elementos de superfície. Os resultados dos modelos individuais, assim como da predição
combinada, encontram-se apresentados a seguir, na Figura 21.

Figura 21 – Resultados da abordagem por modelos segregados

0.9343

0.8654

0.9093

Condições atmosféricas Elementos de superfície Predição combinada
0.8

0.85

0.9

0.95

Modelo

F-
be

ta
 s

co
re

Fonte: O autor (2023)

A partir desse gráfico, ao avaliar o resultado da predição combinada, é interessante
observar que, mesmo com modelos específicos para condições atmosféricas e elementos
de superfície, a performance aumentou somente 0,1% em relação ao melhor cenário de
predição de todas as classes de uma vez. Isso evidencia que, mesmo avaliando todas as
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classes, o modelo único foi capaz de lidar com cada uma delas de forma independente.
Dado esses resultados, caso os experimentos fossem finalizados nessa etapa, a modelagem
única seria considerada a melhor, já que, além de ser mais simples de ser construída por
abrange somente um modelo, apresentaria resultados similares à exploração de modelos
segregados. Por outro lado, com a construção de modelos segregados, foi possível explorar
a variação do threshold de classificação dos rótulos de superfície, mantendo o modelo de
condições atmosféricas prevendo somente um rótulo por imagem. Como será apresentado a
seguir, com essa melhoria, o cenário de modelos segregados passou a proporcionar ganhos
representativos de performance, consolidando essa abordagem como a melhor do trabalho.

A Figura 22 ilustra, justamente, a variação, em função do threshold, da performance
da classificação dos elementos de superfície para as imagens preditas como não sendo
totalmente nubladas no modelo de condições atmosféricas. Por esse gráfico, nota-se que o
melhor valor de threshold correspondeu a 0,26, associado a um Fβ próximo a 0,92 para
os rótulos de superfície nesse conjunto de imagens. Partindo desse cenário e avaliando o
novo resultado das predições combinadas, a nova performance mensurada foi de 0,918,
representado um ganho de 1% em relação ao melhor cenário sem a variação do threshold e
de 3% em relação ao melhor modelo avaliado na etapa dos resultados iniciais.

Figura 22 – Resultados variando o threshold de classificação dos elementos de superfície
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Fonte: O autor (2023)

Contribuindo para entender o significado desse ganho de 3%, a Tabela 7 compara,
por rótulo, os resultados dos melhores modelos inicial e final. Por ela, é interessante
avaliar que, mesmo com performances baixas em virtude da pequena representatividade
dos elementos raros de superfície no conjunto de treino, o modelo aprendeu a classificar
parte das ocorrências desses rótulos, diferentemente do modelo inicial, que sempre previa
esses elementos como ausentes. Nota-se que o único rótulo em que esse comportamento
persistiu foi o slash burn. Para essa classe, por aspectos de semelhança visual e de viés
das ocorrências conjuntas dos rótulos no treinamento, o modelo continuou confundindo
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as aparições do slash burn com se fossem associadas às classes agriculture e cultivation.
Já para o artisinal mine, que o modelo conseguia classificar parcialmente, mas confundia
com os elementos agriculture, habitation e road, a performance melhorou em cerca de 65%,
ganho que pode ser justificado, sobretudo, pela redução dos casos em que o artisinal mine
era confundido com a classe habitation. Antes, como apresentado na Tabela 3, embora
existissem 2 casos reais do rótulo habitation para as imagens artisinal mine, o modelo previa
36 ocorrências. Após as melhorias, essas previsões foram reduzidas para 10 ocorrências.

Tabela 7 – Detalhamento do resultado por rótulo para o modelo final

Grupo Rótulo Fβ inicial Fβ final Variação

Condições
atmosféricas

clear 0,970 0,971 0,001
cloudy 0,774 0,833 0,059
haze 0,648 0,645 -0,003

partly_cloudy 0,903 0,925 0,022

Elementos
de superfície

comuns

agriculture 0,852 0,894 0,042
bare_ground 0,007 0,311 0,304
cultivation 0,449 0,648 0,199
habitation 0,672 0,793 0,121
primary 0,989 0,990 0,001

road 0,793 0,870 0,077
water 0,650 0,804 0,154

Elementos
de superfície

raros

artisinal_mine 0,469 0,771 0,302
blooming - 0,226 0,226

blow_down - 0,187 0,187
conventional_mine - 0,485 0,485
selective_logging - 0,396 0,396

slash_burn - - -
Fonte: O autor (2023)

Já em relação ao elementos comuns de superfície, os principais ganhos foram nas
classes bare ground e cultivation. Assim como para os modelos iniciais, eles continuaram
sendo os rótulos de maior erro, mas tiveram suas performances aprimoradas significativa-
mente. Para o bare ground, enquanto antes o modelo havia conseguido identificar somente
1 das 175 ocorrências do rótulo no conjunto de validação, com o novo modelo, esse número
aumentou para 50. Para esse caso, a melhoria foi proporcionada pela redução no threshold,
diferentemente do que ocorreu com a classe artisinal mine, em que o novo modelo foi capaz
de reduzir as inversões de rótulo. Assim, nas imagens bare ground, o modelo continuou
interpretando que o elemento agriculture estaria presente, mas com o menor threshold,
foi capaz de classificar, também, o rótulo correto bare ground. Para o rótulo cultivation,
o comportamento foi similar. Antes, como mencionado nos resultados iniciais, o modelo
havia conseguido classificar 42% das ocorrências do rótulo, confundindo-o com os elementos
agriculture, habitation e road. Após as melhorias, esse número subiu para 69,6%, mas
as classificações dos rótulos errados continuaram presente, indicando que a melhoria no
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resultado foi proporcionada, assim como no caso do bare ground, pelo menor threshold.

Para os rótulos de condições atmosféricas, observa-se na Tabela 7 que, apesar das
melhorias na modelagem, o rótulo haze continuou sendo aquele com a pior performance.
Para essa classe, persistiu o cenário analisado nos modelos iniciais de que, em imagens com
pouca variação nos elementos de superfície, o modelo apresenta dificuldade em diferenciar
a tonalidade um pouco mais opaca presente na imagem como pertencente à neblina, e não
ao próprio elemento de superfície. Já como cenário positivo para esse grupo de rótulos,
avalia-se que os principais ganhos foram nas classes cloudy e partly cloudy, com melhorias
de 7,6% e 2,4%. Para elas, a Tabela 8 apresenta a contagem dos rótulos reais e preditos
nos cenários inicial e final. Em relação ao cloudy, nota-se que a melhoria do resultado
foi proporcionada pela correção dos casos em que esse rótulo havia sido confundido,
principalmente, com a classe partly cloudy. Já para o rótulo partly cloudy, as correções
foram, sobretudo, nos rótulos que haviam sido interpretados como clear.

Tabela 8 – Comparativo das classificações de condições atmosféricas

Rótulo Cenário cloudy partly cloudy clear haze

cloudy
Real 395 0 0 0

Predito (inicial) 296 37 16 37
Predito (final) 324 25 14 29

partly cloudy
Real 0 1440 0 0

Predito (inicial) 5 1297 119 9
Predito (final) 13 1339 65 6

Fonte: O autor (2023)

Concluindo a seção de resultados, a Figura 23 ilustra três imagens que, classificadas
com inversão de rótulo no modelo inicial, foram interpretadas corretamente no modelo final.
Nesse sentido, (a) ilustra um caso de artisinal mine que, anteriormente, era classificado
como habitation; (b) um caso de cloudy que era classificado como partly cloudy e (c) um
caso de partly cloudy que era classificado como clear.

Figura 23 – Exemplos de imagens com classificações corrigidas no modelo final
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5 CONCLUSÕES

Aplicando distintas técnicas de deep learning, o trabalho apresentado construiu
modelos de visão computacional voltados à classificação de múltiplos rótulos presentes
em imagens de satélite da região amazônica. Para isso, utilizou como base de dados um
conjunto com cerca de 40 mil imagens disponibilizadas na plataforma Kaggle no ano
de 2017. Consultadas essas imagens, as principais etapas do trabalho foram de análise
exploratória e de desenvolvimentos dos modelos iniciais e finais.

Na análise exploratória, para os rótulos de condições atmosféricas, o estudo avaliou
que cada imagem poderia estar associada a somente uma classe, o que motivou a construção
de um modelo multi-classe específico para esses rótulos na etapa dos resultados finais.
Já para os elementos de superfície, foi observado que, embora o cenário com um único
rótulo fosse o mais comum, cerca de 48% das imagens apresentavam mais de uma classe,
sendo comuns cenários com 2, 3 ou 4 rótulos. Nesse grupo de rótulos, notou-se, também,
que existia uma variação significativa na representatividade entre as classes, com o rótulo
primary sendo 2,3 vezes mais frequente do que a soma de todos os demais desse grupo.
Para os elementos raros, notou-se que, de fato, a presença desses elementos nas imagens
era esporádica, ocorrendo somente em 3,6% das imagens disponíveis. Como consequência,
esse desbalanceamento trouxe desafios que o trabalho procurou superar, mas que acabaram
refletidos na performance dos modelos desenvolvidos.

Nos modelos iniciais, após explorar quatro alternativas de modelagem, o trabalho
concluiu que a melhor abordagem correspondeu ao caso em que VGG16 foi configurada
com uma camada de batch normalization no início da rede e foi ajustada para que os pesos
da ImageNet, em todas as camadas, possuíssem liberdade de retreino desde a primeira
época. Nessa abordagem, a performance geral pela métrica Fβ foi de 0,891, mas apresentou
variação significativa entre os rótulos. Em particular, o trabalho observou que, pela baixa
representatividade no conjunto de treino, o modelo foi incapaz de classificar elementos
raros de superfície, prevendo, no geral, a ausência dos elementos desse grupo. Já para os
elementos comuns, embora o modelo tenha apresentado performance elevada nos rótulos
agriculture e primary, acabou, por efeitos de similaridade de aspectos visuais e viés do
conjunto de treino, invertendo classificações e apresentando performance piores nos rótulos
bare ground e cultivation. Por fim, para as condições atmosféricas, o modelo apresentou
performance elevada na identificação das imagens clear, mas, nos casos com neblina e
pouca variação de elementos de superfície, apresentou dificuldade em interpretar que a
tonalidade mais opaca da imagem seria da neblina, e não do próprio elemento de superfície.

Nos modelos finais, observou-se que a mudança na configuração do parâmetro
learning rate, permitindo que ele fosse atualizado ao longo das épocas, contribuiu para uma
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melhor convergência do processo de otimização. Além disso, a aumentação de dados no
conjunto de treino viabilizou que a performance no treinamento se tornasse mais coerente
àquela da validação, o que conferiu maior generalidade ao modelo desenvolvimento. Já
a variação nas dimensões das imagens permitiu que as perdas de informação dos inputs
iniciais fossem minimizadas e que os pesos pré-treinados se tornassem mais compatíveis
com o cenário avaliado desde o início do treinamento. Nesse contexto dos modelos finais, a
ResNet50, que nos modelos iniciais havia proporcionado resultados inferiores à VGG16,
passou a ser o modelo mais adequado para interpretar a maior complexidade dos dados,
apresentando as melhores performances. Por fim, com construção dos modelos segregados
e a variação do threshold, conseguiu-se obter uma modelagem que aumentou a capacidade
de identificação dos elementos de superfície, ao mesmo tempo em que garantiu que, em
cada predição, fosse classificado somente uma das condições atmosféricas.

Como consequência das melhorias, o modelo conseguiu aumentar a performance na
maioria dos rótulos, reduzindo as ocorrências de inversões de classificação e passando a
identificar casos que nos modelos iniciais não eram classificados, como nos elementos raros
de superfície. Em contrapartida, mesmo no modelo final, em virtude do efeito da ausência
de representatividade no conjunto de treinamento, as performances permaneceram baixas
para os rótulos raros e para as classes bare ground, cultivation e haze. Nesse sentido, como
próximos passos a serem explorados para melhorar a performance dessas classes, seria
interessante aumentar a quantidade de imagens rotuladas. Sendo inviável essa opção, podem
ser exploradas abordagens semi-supervisionadas para agregar à classificação conhecimento
a partir das imagens não rotuladas. Seria interessante, também, explorar estratégias de
curriculum learning, visando gerar um aprendizado dos rótulos de forma gradual, partindo
das classes mais fáceis para as mais difíceis, que poderia contribuir para ganhos de
performance adicionais nas classificações. Por fim, menciona-se que, além desses próximos
passos que se associam a aspectos de modelagem, seria interessante, também, expandir a
aplicação do modelo desenvolvido para além do conjunto de dados explorado, avaliando-o,
por exemplo, em imagens extraídas do Google Maps ou de outras fontes, como o INPE ou
a própria companhia Planet, associada às imagens utilizadas como base para o estudo.

Considerando os aspectos apresentados, entende-se que o trabalho atingiu o objetivo
desejado de proporcionar uma classificação automática eficiência de rótulos de imagens
de satélite da Amazônia, embora os próximos passos mencionados possam tornar os
desenvolvimentos ainda mais robustos para aplicações reais de suporte à atuação de
fotointerpretes especialistas no monitoramento do desmatamento.
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